Computing excited states of molecules using normalizing flows
- URL: http://arxiv.org/abs/2308.16468v1
- Date: Thu, 31 Aug 2023 05:22:51 GMT
- Title: Computing excited states of molecules using normalizing flows
- Authors: Yahya Saleh, \'Alvaro Fern\'andez Corral, Armin Iske, Jochen K\"upper,
and Andrey Yachmenev
- Abstract summary: We present a new nonlinear variational framework for simultaneously computing ground and excited states of quantum systems.
Our approach is based on approxingimating wavefunctions in the linear span of basis functions that are augmented and optimized emphvia composition with normalizing flows.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new nonlinear variational framework for simultaneously computing
ground and excited states of quantum systems. Our approach is based on
approximating wavefunctions in the linear span of basis functions that are
augmented and optimized \emph{via} composition with normalizing flows. The
accuracy and efficiency of our approach are demonstrated in the calculations of
a large number of vibrational states of the triatomic H$_2$S molecule as well
as ground and several excited electronic states of prototypical one-electron
systems including the hydrogen atom, the molecular hydrogen ion, and a carbon
atom in a single-active-electron approximation. The results demonstrate
significant improvements in the accuracy of energy predictions and accelerated
basis-set convergence even when using normalizing flows with a small number of
parameters. The present approach can be also seen as the optimization of a set
of intrinsic coordinates that best capture the underlying physics within the
given basis set.
Related papers
- Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations [58.130170155147205]
Neural wave functions accomplished unprecedented accuracies in approximating the ground state of many-electron systems, though at a high computational cost.
Recent works proposed amortizing the cost by learning generalized wave functions across different structures and compounds instead of solving each problem independently.
This work tackles the problem by defining overparametrized, fully learnable neural wave functions suitable for generalization across molecules.
arXiv Detail & Related papers (2024-05-23T16:30:51Z) - Interpolating many-body wave functions for accelerated molecular dynamics on the near-exact electronic surface [0.0]
We develop a scheme for the correlated many-electron state through the space of atomic configurations.
We demonstrate provable convergence to near-exact potential energy surfaces for subsequent dynamics.
We combine this with modern electronic structure approaches to systematically resolve molecular dynamics trajectories.
arXiv Detail & Related papers (2024-02-16T22:03:37Z) - Orbital-Free Density Functional Theory with Continuous Normalizing Flows [54.710176363763296]
Orbital-free density functional theory (OF-DFT) provides an alternative approach for calculating the molecular electronic energy.
Our model successfully replicates the electronic density for a diverse range of chemical systems.
arXiv Detail & Related papers (2023-11-22T16:42:59Z) - The Weakly Bound States in Gaussian Wells: From the Binding Energy of
Deuteron to the Electronic Structure of Quantum Dots [0.0]
This study focuses on examining the lowest states within Gaussian wells, with particular emphasis on the weakly bound regime.
The analysis delves into the behavior of the exact wave function at both small and large distances, motivating the development of a few-parametric Ansatz.
In concluding our investigation, we evaluate the performance of our Ansatz as an orbital in the exploration of the electronic structure of a two-electron quantum dot.
arXiv Detail & Related papers (2023-11-05T20:48:12Z) - Say NO to Optimization: A Non-Orthogonal Quantum Eigensolver [0.0]
A balanced description of both static and dynamic correlations in electronic systems with nearly degenerate low-lying states presents a challenge for multi-configurational methods on classical computers.
We present here a quantum algorithm utilizing the action of correlating cluster operators to provide high-quality wavefunction ans"atze.
arXiv Detail & Related papers (2022-05-18T16:20:36Z) - High-precision real-space simulation of electrostatically-confined
few-electron states [0.0]
We introduce a benchmark problem based on a realistic analytical electrostatic potential for quantum dot devices.
We show that our approach leads to highly precise computed energies and energy differences over a wide range of model parameters.
arXiv Detail & Related papers (2022-02-28T20:31:29Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.