論文の概要: Test-Time Adaptation for Point Cloud Upsampling Using Meta-Learning
- arxiv url: http://arxiv.org/abs/2308.16484v2
- Date: Fri, 1 Sep 2023 18:12:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 02:18:18.830010
- Title: Test-Time Adaptation for Point Cloud Upsampling Using Meta-Learning
- Title(参考訳): メタラーニングを用いたポイントクラウドアップサンプリングのためのテスト時間適応
- Authors: Ahmed Hatem, Yiming Qian, Yang Wang
- Abstract要約: 本稿では,点群アップサンプリングのモデル一般性を高めるためのテスト時間適応手法を提案する。
提案手法はメタラーニングを利用してテスト時間適応のためのネットワークパラメータを明示的に学習する。
我々のフレームワークは汎用的であり、既存のバックボーンネットワークをポイントクラウドのアップサンプリングにプラグイン・アンド・プレイで適用することができる。
- 参考スコア(独自算出の注目度): 17.980649681325406
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Affordable 3D scanners often produce sparse and non-uniform point clouds that
negatively impact downstream applications in robotic systems. While existing
point cloud upsampling architectures have demonstrated promising results on
standard benchmarks, they tend to experience significant performance drops when
the test data have different distributions from the training data. To address
this issue, this paper proposes a test-time adaption approach to enhance model
generality of point cloud upsampling. The proposed approach leverages
meta-learning to explicitly learn network parameters for test-time adaption.
Our method does not require any prior information about the test data. During
meta-training, the model parameters are learned from a collection of
instance-level tasks, each of which consists of a sparse-dense pair of point
clouds from the training data. During meta-testing, the trained model is
fine-tuned with a few gradient updates to produce a unique set of network
parameters for each test instance. The updated model is then used for the final
prediction. Our framework is generic and can be applied in a plug-and-play
manner with existing backbone networks in point cloud upsampling. Extensive
experiments demonstrate that our approach improves the performance of
state-of-the-art models.
- Abstract(参考訳): 拡張可能な3Dスキャナはしばしば、ロボットシステムにおける下流アプリケーションに悪影響を及ぼすスパースと非一様点雲を発生させる。
既存のポイントクラウドのアップサンプリングアーキテクチャは、標準ベンチマークで有望な結果を示しているが、テストデータがトレーニングデータと異なる分布を持つ場合、大きなパフォーマンス低下を経験する傾向にある。
そこで本研究では,点群アップサンプリングのモデル一般性を高めるためのテスト時間適応手法を提案する。
提案手法はメタラーニングを利用してテスト時間適応のためのネットワークパラメータを明示的に学習する。
我々の方法はテストデータに関する事前情報を必要としない。
メタトレーニングの間、モデルパラメータはインスタンスレベルのタスクの集合から学習される。
メタテスト中、トレーニングされたモデルは、各テストインスタンスに対してユニークなネットワークパラメータを生成するために、いくつかの勾配更新で微調整される。
更新されたモデルが最終予測に使用される。
私たちのフレームワークは汎用的で、ポイントクラウドアップサンプリングの既存のバックボーンネットワークとプラグ・アンド・プレイ方式で適用できます。
広範な実験により,我々のアプローチが最先端モデルの性能を向上させることを実証した。
関連論文リスト
- Dynamic Adapter Meets Prompt Tuning: Parameter-Efficient Transfer Learning for Point Cloud Analysis [51.14136878142034]
ポイントクラウド分析は、事前訓練されたモデルのポイントクラウドの転送によって、優れたパフォーマンスを実現している。
モデル適応のための既存の方法は通常、高い計算コストに依存するため、非効率な全てのモデルパラメータを更新する。
本稿では,タスク性能とパラメータ効率のトレードオフを考慮した,ポイントクラウド解析のためのパラメータ効率変換学習を提案する。
論文 参考訳(メタデータ) (2024-03-03T08:25:04Z) - Point-TTA: Test-Time Adaptation for Point Cloud Registration Using
Multitask Meta-Auxiliary Learning [17.980649681325406]
我々は、ポイントクラウド登録(PCR)のための新しいテスト時間適応フレームワークであるPoint-TTAを提案する。
我々のモデルは、テストデータの事前の知識を必要とせずに、テスト時に目に見えない分布に適応することができる。
訓練中は, 補助タスクによる適応モデルにより主タスクの精度が向上するように, メタ補助学習アプローチを用いて訓練を行う。
論文 参考訳(メタデータ) (2023-08-31T06:32:11Z) - Instance-aware Dynamic Prompt Tuning for Pre-trained Point Cloud Models [64.49254199311137]
本稿では,事前学習点クラウドモデルのための新しいインスタンス対応動的プロンプトチューニング(IDPT)戦略を提案する。
IDPTの本質は、各ポイントクラウドインスタンスのセマンティックな事前特徴を知覚する動的プロンプト生成モジュールを開発することである。
実験では、IDPTはトレーニング可能なパラメータのわずか7%で、ほとんどのタスクにおいて完全な微調整よりも優れています。
論文 参考訳(メタデータ) (2023-04-14T16:03:09Z) - Effective Utilisation of Multiple Open-Source Datasets to Improve
Generalisation Performance of Point Cloud Segmentation Models [0.0]
航空点雲データのセマンティックセグメンテーションは、地面、建物、植生などのクラスに属するポイントを区別するために利用することができる。
ドローンや飛行機に搭載された空中センサーから発生する点雲は、LIDARセンサーやカメラと光度計を利用することができる。
そこで本研究では,データセットの単純な組み合わせが,期待通りに一般化性能を向上したモデルを生成することを示す。
論文 参考訳(メタデータ) (2022-11-29T02:31:01Z) - Sampling Streaming Data with Parallel Vector Quantization -- PVQ [0.0]
本稿では,データストリームのクラス不均衡を大幅に低減するベクトル量子化に基づくサンプリング手法を提案する。
並列処理、バッチ処理、ランダムにサンプルを選択するモデルを構築しました。
本手法により,データストリームの事前処理により,分類モデルの精度が向上することを示す。
論文 参考訳(メタデータ) (2022-10-04T17:59:44Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
テスト時間適応(TTA)は、テスト時にラベルのないデータにモデルを適応させることによって、この問題に対処することを目的としている。
本稿では,クラス認識特徴アライメント(CAFA, Class-Aware Feature Alignment)と呼ばれる単純な機能アライメント損失を提案する。
論文 参考訳(メタデータ) (2022-06-01T03:02:07Z) - Parameter-free Online Test-time Adaptation [19.279048049267388]
実世界の様々なシナリオにおいて,テスト時間適応手法が事前学習されたモデルにどのような効果をもたらすかを示す。
我々は特に「保守的」なアプローチを提案し、ラプラシアン適応最大推定(LAME)を用いてこの問題に対処する。
提案手法では,既存の手法よりもシナリオの平均精度がはるかに高く,メモリフットプリントもはるかに高速である。
論文 参考訳(メタデータ) (2022-01-15T00:29:16Z) - MEMO: Test Time Robustness via Adaptation and Augmentation [131.28104376280197]
テスト時間ロバスト化の問題、すなわちモデルロバスト性を改善するためにテストインプットを用いて検討する。
最近の先行研究ではテスト時間適応法が提案されているが、それぞれ追加の仮定を導入している。
モデルが確率的で適応可能な任意のテスト環境で使用できるシンプルなアプローチを提案する。
論文 参考訳(メタデータ) (2021-10-18T17:55:11Z) - MT3: Meta Test-Time Training for Self-Supervised Test-Time Adaption [69.76837484008033]
ディープラーニングの未解決の問題は、ニューラルネットワークがテスト時間中のドメインシフトに対処する能力である。
メタラーニング、自己監督、テストタイムトレーニングを組み合わせて、目に見えないテスト分布に適応する方法を学びます。
この手法はcifar-10による画像分類ベンチマークの最先端結果を大幅に改善する。
論文 参考訳(メタデータ) (2021-03-30T09:33:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。