On a Connection between Differential Games, Optimal Control, and
Energy-based Models for Multi-Agent Interactions
- URL: http://arxiv.org/abs/2308.16539v2
- Date: Mon, 16 Oct 2023 14:37:54 GMT
- Title: On a Connection between Differential Games, Optimal Control, and
Energy-based Models for Multi-Agent Interactions
- Authors: Christopher Diehl and Tobias Klosek and Martin Kr\"uger and Nils
Murzyn and Torsten Bertram
- Abstract summary: We show a connection between differential games, optimal control, and energy-based models.
Building upon this formulation, this work introduces a new end-to-end learning application.
Experiments using simulated mobile robot pedestrian interactions and real-world automated driving data provide empirical evidence.
- Score: 0.13499500088995461
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Game theory offers an interpretable mathematical framework for modeling
multi-agent interactions. However, its applicability in real-world robotics
applications is hindered by several challenges, such as unknown agents'
preferences and goals. To address these challenges, we show a connection
between differential games, optimal control, and energy-based models and
demonstrate how existing approaches can be unified under our proposed
Energy-based Potential Game formulation. Building upon this formulation, this
work introduces a new end-to-end learning application that combines neural
networks for game-parameter inference with a differentiable game-theoretic
optimization layer, acting as an inductive bias. The experiments using
simulated mobile robot pedestrian interactions and real-world automated driving
data provide empirical evidence that the game-theoretic layer improves the
predictive performance of various neural network backbones.
Related papers
- COLLAGE: Collaborative Human-Agent Interaction Generation using Hierarchical Latent Diffusion and Language Models [14.130327598928778]
Large language models (LLMs) and hierarchical motion-specific vector-quantized variational autoencoders (VQ-VAEs) are proposed.
Our framework generates realistic and diverse collaborative human-object-human interactions, outperforming state-of-the-art methods.
Our work opens up new possibilities for modeling complex interactions in various domains, such as robotics, graphics and computer vision.
arXiv Detail & Related papers (2024-09-30T17:02:13Z) - Cyber Physical Games [0.0]
We show that the non-determinism inherent in the communication medium between agents and the underlying physical environment gives rise to environment evolution.
We name these emergent properties Cyber Physical Games and study its properties.
We present an algorithmic model that determines the most likely system evolution, approximating Cyber Physical Games through Probabilistic Finite State Automata.
arXiv Detail & Related papers (2024-07-08T10:54:14Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [55.65482030032804]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
Our approach infers dynamically evolving relation graphs and hypergraphs to capture the evolution of relations, which the trajectory predictor employs to generate future states.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - Energy-based Potential Games for Joint Motion Forecasting and Control [0.125828876338076]
This work uses game theory as a mathematical framework to address interaction modeling in motion forecasting and control.
We establish a connection between differential games, optimal control, and energy-based models, demonstrating how existing approaches can be unified under our proposed Energy-based Potential Game formulation.
We introduce a new end-to-end learning application that combines neural networks for game- parameter inference with a differentiable game-theoretic optimization layer, acting as an inductive bias.
arXiv Detail & Related papers (2023-12-04T11:30:26Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Multi-Agent Verification and Control with Probabilistic Model Checking [4.56877715768796]
Probabilistic model checking is a technique for formal automated reasoning about software or hardware systems.
It builds upon ideas and techniques from a diverse range of fields, from logic, automata and graph theory, to optimisation, numerical methods and control.
In recent years, probabilistic model checking has also been extended to integrate ideas from game theory.
arXiv Detail & Related papers (2023-08-05T09:31:32Z) - Rethinking Trajectory Prediction via "Team Game" [118.59480535826094]
We present a novel formulation for multi-agent trajectory prediction, which explicitly introduces the concept of interactive group consensus.
On two multi-agent settings, i.e. team sports and pedestrians, the proposed framework consistently achieves superior performance compared to existing methods.
arXiv Detail & Related papers (2022-10-17T07:16:44Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation [75.0278287071591]
ThreeDWorld (TDW) is a platform for interactive multi-modal physical simulation.
TDW enables simulation of high-fidelity sensory data and physical interactions between mobile agents and objects in rich 3D environments.
We present initial experiments enabled by TDW in emerging research directions in computer vision, machine learning, and cognitive science.
arXiv Detail & Related papers (2020-07-09T17:33:27Z) - EvolveGraph: Multi-Agent Trajectory Prediction with Dynamic Relational
Reasoning [41.42230144157259]
We propose a generic trajectory forecasting framework with explicit relational structure recognition and prediction via latent interaction graphs.
Considering the uncertainty of future behaviors, the model is designed to provide multi-modal prediction hypotheses.
We introduce a double-stage training pipeline which not only improves training efficiency and accelerates convergence, but also enhances model performance.
arXiv Detail & Related papers (2020-03-31T02:49:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.