論文の概要: Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation for
Semi-Supervised Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2308.16573v1
- Date: Thu, 31 Aug 2023 09:13:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-01 15:03:27.103861
- Title: Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation for
Semi-Supervised Medical Image Segmentation
- Title(参考訳): 半監督医用画像分割のための擬似ラベルガイドデータ拡張によるデュアルデコーダの整合性
- Authors: Yuanbin Chen, Tao Wang, Hui Tang, Longxuan Zhao, Ruige Zong, Tao Tan,
Xinlin Zhang, Tong Tong
- Abstract要約: 平均教師モデルに基づく半教師付き医用画像分割手法を提案する。
デコーダ間の出力差を最小限にすることは、一貫した表現の生成を強制する。
混合操作はラベル付きデータとラベル付きデータを混合し、混合データを生成する。
擬似ラベルは教師モデルによって生成され、混合データのラベルとして利用される。
- 参考スコア(独自算出の注目度): 14.091075323989726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation methods often rely on fully supervised approaches
to achieve excellent performance, which is contingent upon having an extensive
set of labeled images for training. However, annotating medical images is both
expensive and time-consuming. Semi-supervised learning offers a solution by
leveraging numerous unlabeled images alongside a limited set of annotated ones.
In this paper, we introduce a semi-supervised medical image segmentation method
based on the mean-teacher model, referred to as Dual-Decoder Consistency via
Pseudo-Labels Guided Data Augmentation (DCPA). This method combines consistency
regularization, pseudo-labels, and data augmentation to enhance the efficacy of
semi-supervised segmentation. Firstly, the proposed model comprises both
student and teacher models with a shared encoder and two distinct decoders
employing different up-sampling strategies. Minimizing the output discrepancy
between decoders enforces the generation of consistent representations, serving
as regularization during student model training. Secondly, we introduce mixup
operations to blend unlabeled data with labeled data, creating mixed data and
thereby achieving data augmentation. Lastly, pseudo-labels are generated by the
teacher model and utilized as labels for mixed data to compute unsupervised
loss. We compare the segmentation results of the DCPA model with six
state-of-the-art semi-supervised methods on three publicly available medical
datasets. Beyond classical 10\% and 20\% semi-supervised settings, we
investigate performance with less supervision (5\% labeled data). Experimental
outcomes demonstrate that our approach consistently outperforms existing
semi-supervised medical image segmentation methods across the three
semi-supervised settings.
- Abstract(参考訳): 医用画像のセグメンテーション手法は、訓練用にラベル付き画像の広範なセットを持つことで、優れたパフォーマンスを達成するために、完全に教師されたアプローチに依存することが多い。
しかし、医用画像の注釈付けは高価かつ時間を要する。
セミ教師付き学習は、注釈付き画像の限られたセットとともに多くのラベルのない画像を活用することで、ソリューションを提供する。
本稿では,Pseudo-Labels Guided Data Augmentation (DCPA)を介して,Dual-Decoder Consistencyと呼ばれる平均教師モデルに基づく半教師付き医療画像分割手法を提案する。
この方法は、整合正則化、擬似ラベル、データ拡張を組み合わせ、半教師付きセグメンテーションの有効性を高める。
まず,提案モデルは,共用エンコーダを持つ生徒モデルと教師モデルの両方と,異なるアップサンプリング戦略を用いた2つの異なるデコーダから構成される。
デコーダ間の出力差を最小限に抑えることで一貫した表現が生成され、学生モデルのトレーニング中に正規化される。
次に,ラベル付きデータとラベル付きデータとを混合して混合データを生成し,データ拡張を実現する。
最後に、疑似ラベルは教師モデルによって生成され、教師なし損失を計算するために混合データのラベルとして利用される。
dcpaモデルのセグメンテーション結果と,3つの医療データセットにおける最先端の6つの半教師付き手法を比較した。
従来の10\%と20\%の半教師付き設定を超えて、より監督の少ないパフォーマンス(ラベル付きデータ)を調査する。
実験結果から,本手法は既存の半教師付き医用画像セグメンテーション法より常に優れていることが示された。
関連論文リスト
- GuidedNet: Semi-Supervised Multi-Organ Segmentation via Labeled Data Guide Unlabeled Data [4.775846640214768]
半監督型多臓器画像分割は、医師が疾患の診断と治療計画を改善するのに役立つ。
キーとなる概念は、ラベル付きデータとラベルなしデータからのボクセル機能は、同じクラスに属する可能性が高い機能空間で互いに近接しているということである。
我々は、ラベル付きデータから得られた事前知識を活用してラベルなしデータのトレーニングをガイドする知識伝達クロス擬似ラベルスーパービジョン(KT-CPS)戦略を導入する。
論文 参考訳(メタデータ) (2024-08-09T07:46:01Z) - Leveraging Fixed and Dynamic Pseudo-labels for Semi-supervised Medical Image Segmentation [7.9449756510822915]
半教師付き医用画像セグメンテーションは、注釈のないデータを利用する能力によって、関心が高まりつつある。
現在の最先端の手法は、主にコトレーニングフレームワーク内の擬似ラベルに依存している。
本稿では,同一の未注釈画像に対する複数の擬似ラベルを用いてラベルのないデータから学習する手法を提案する。
論文 参考訳(メタデータ) (2024-05-12T11:30:01Z) - CrossMatch: Enhance Semi-Supervised Medical Image Segmentation with Perturbation Strategies and Knowledge Distillation [7.6057981800052845]
CrossMatchは、ラベル付きデータとラベルなしデータの両方からモデルの学習を改善するために、知識蒸留とデュアル戦略レベルの機能レベルを統合する新しいフレームワークである。
本手法は,ラベル付きデータとラベルなしデータのトレーニングのギャップを効果的に最小化することにより,標準ベンチマークにおける他の最先端技術を大幅に超えている。
論文 参考訳(メタデータ) (2024-05-01T07:16:03Z) - Pseudo Label-Guided Data Fusion and Output Consistency for
Semi-Supervised Medical Image Segmentation [9.93871075239635]
より少ないアノテーションで医用画像のセグメンテーションを行うための平均教師ネットワーク上に構築されたPLGDFフレームワークを提案する。
本稿では,ラベル付きデータとラベルなしデータを組み合わせてデータセットを効果的に拡張する,新しい擬似ラベル利用方式を提案する。
本フレームワークは,最先端の6つの半教師あり学習手法と比較して,優れた性能が得られる。
論文 参考訳(メタデータ) (2023-11-17T06:36:43Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Pseudo-label Guided Cross-video Pixel Contrast for Robotic Surgical
Scene Segmentation with Limited Annotations [72.15956198507281]
シーンセグメンテーションを促進するために,新しい擬似ラベル付きクロスビデオコントラスト学習法であるPGV-CLを提案する。
本研究では,ロボット外科手術データセットEndoVis18と白内障手術データセットCaDISについて検討した。
論文 参考訳(メタデータ) (2022-07-20T05:42:19Z) - Self-Paced Contrastive Learning for Semi-supervisedMedical Image
Segmentation with Meta-labels [6.349708371894538]
メタラベルアノテーションを扱うために、コントラスト学習を適用することを提案する。
画像エンコーダの事前トレーニングにはメタラベルを使用し、半教師付きトレーニングを標準化する。
3つの異なる医用画像セグメンテーションデータセットの結果から,本手法は数回のスキャンでトレーニングしたモデルの性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2021-07-29T04:30:46Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - Dual-Teacher: Integrating Intra-domain and Inter-domain Teachers for
Annotation-efficient Cardiac Segmentation [65.81546955181781]
本稿では,新しい半教師付きドメイン適応手法,すなわちDual-Teacherを提案する。
学生モデルは、2つの教師モデルによってラベル付けされていない対象データとラベル付けされた情報源データの知識を学習する。
提案手法では, ラベルなしデータとモダリティ間データとを並列に利用でき, 性能が向上することを示した。
論文 参考訳(メタデータ) (2020-07-13T10:00:44Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
教師-学生最適化の非同期版であるATSOを提案する。
ATSOはラベルのないデータを2つのサブセットに分割し、モデルの微調整に1つのサブセットを交互に使用し、他のサブセットのラベルを更新する。
医用画像のセグメンテーションデータセットを2つ評価し,様々な半教師付き環境において優れた性能を示す。
論文 参考訳(メタデータ) (2020-06-24T04:05:12Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
本研究では、畳み込みニューラルネットワークによるセグメンテーションを改善するために、オートエンコーダ抽出機能の可能性を検討する。
コンボリューション・オートエンコーダを用いてラベルのないデータから特徴を抽出し,CT画像における3次元肝セグメンテーションの目標タスクを実行するために,マルチスケールの完全畳み込みCNNを用いた。
論文 参考訳(メタデータ) (2020-03-17T20:20:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。