論文の概要: High Accuracy Location Information Extraction from Social Network Texts
Using Natural Language Processing
- arxiv url: http://arxiv.org/abs/2308.16615v1
- Date: Thu, 31 Aug 2023 10:21:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-01 14:55:52.020587
- Title: High Accuracy Location Information Extraction from Social Network Texts
Using Natural Language Processing
- Title(参考訳): 自然言語処理を用いたソーシャルネットワークテキストからの高精度位置情報抽出
- Authors: Lossan Bonde, Severin Dembele
- Abstract要約: 本稿では、ソーシャルネットワークからテキストを使って必要な情報を抽出し、テロ攻撃予測のための適切なデータセットを構築する研究プロジェクトの一部である。
私たちはブルキナファソでテロに関する3000のソーシャルネットワークのテキストを収集し、既存のNLPソリューションを試すためにサブセットを使用しました。
実験の結果,既存の解法は位置認識の精度が低く,解法が解けることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Terrorism has become a worldwide plague with severe consequences for the
development of nations. Besides killing innocent people daily and preventing
educational activities from taking place, terrorism is also hindering economic
growth. Machine Learning (ML) and Natural Language Processing (NLP) can
contribute to fighting terrorism by predicting in real-time future terrorist
attacks if accurate data is available. This paper is part of a research project
that uses text from social networks to extract necessary information to build
an adequate dataset for terrorist attack prediction. We collected a set of 3000
social network texts about terrorism in Burkina Faso and used a subset to
experiment with existing NLP solutions. The experiment reveals that existing
solutions have poor accuracy for location recognition, which our solution
resolves. We will extend the solution to extract dates and action information
to achieve the project's goal.
- Abstract(参考訳): テロは、国家の発展に深刻な結果をもたらす世界的な疫病となった。
毎日無実の人々を殺して教育活動を妨げているだけでなく、テロリズムは経済成長を妨げている。
機械学習(ML)と自然言語処理(NLP)は、正確なデータが利用可能であれば、リアルタイムのテロリスト攻撃を予測することによって、テロと戦うのに寄与する。
本稿では、ソーシャルネットワークからテキストを使って必要な情報を抽出し、テロ攻撃予測のための適切なデータセットを構築する研究プロジェクトの一部である。
私たちはブルキナファソでテロに関する3000のソーシャルネットワークのテキストを収集し、既存のNLPソリューションを試すためにサブセットを使用しました。
実験の結果,既存の解は位置認識の精度が低く,解法は解けることがわかった。
プロジェクトの目標を達成するために、日付とアクション情報を抽出するソリューションを拡張します。
関連論文リスト
- MisinfoEval: Generative AI in the Era of "Alternative Facts" [50.069577397751175]
本稿では,大規模言語モデル(LLM)に基づく誤情報介入の生成と評価を行うフレームワークを提案する。
本研究では,(1)誤情報介入の効果を測定するための模擬ソーシャルメディア環境の実験,(2)ユーザの人口動態や信念に合わせたパーソナライズされた説明を用いた第2の実験について述べる。
以上の結果から,LSMによる介入はユーザの行動の修正に極めて有効であることが確認された。
論文 参考訳(メタデータ) (2024-10-13T18:16:50Z) - Into the crossfire: evaluating the use of a language model to
crowdsource gun violence reports [0.21485350418225244]
我々は、通常のポルトガル語のテキストと銃暴力の報告を区別するために、Twitterテキストで訓練された細調整BERTベースのモデルを提案する。
我々は、新たな銃暴力イベントを特定するために、ソーシャルメディアのテキストを継続的に事実チェックしているブラジルのアナリストを調査、インタビューする。
論文 参考訳(メタデータ) (2024-01-16T14:40:54Z) - CrisisMatch: Semi-Supervised Few-Shot Learning for Fine-Grained Disaster
Tweet Classification [51.58605842457186]
半教師付き, 少数ショットの学習環境下で, 微粒な災害ツイート分類モデルを提案する。
私たちのモデルであるCrisisMatchは、ラベルなしデータと大量のラベルなしデータを用いて、ツイートを関心の細かいクラスに効果的に分類する。
論文 参考訳(メタデータ) (2023-10-23T07:01:09Z) - Online Auditing of Information Flow [4.557963624437785]
本稿では,ニュース項目を偽物や真偽と分類することを目的として,情報の流れ・伝播のオンライン監査の問題点を考察する。
グラフによってモデル化されたネットワーク上での確率的マルコフ情報拡散モデルを提案する。
上記のリスクを最小化する最適検出アルゴリズムを発見し,いくつかの統計的保証を証明した。
論文 参考訳(メタデータ) (2023-10-23T06:03:55Z) - Predicting Terrorist Attacks in the United States using Localized News
Data [13.164412455321907]
テロは世界中で大きな問題であり、毎年数千人の死者と数十億ドルの損害をもたらしている。
我々は、特定の日時と特定の状況でテロ攻撃が起こるかどうかを予測するために、ローカルニュースデータから学習する機械学習モデルを提示する。
最高のモデルであるランダムフォレスト(Random Forest)は、2015年から2018年の間に最もテロの影響を受けていた5州のうち4州で、特徴空間の新たな変動長移動平均表現から学ぶ。
論文 参考訳(メタデータ) (2022-01-12T03:56:15Z) - FacTeR-Check: Semi-automated fact-checking through Semantic Similarity
and Natural Language Inference [61.068947982746224]
FacTeR-Checkは、ファクトチェックされた情報の検索、未確認のクレームの検証、ソーシャルメディア上での危険な情報の追跡を可能にする。
このアーキテクチャは、NLI19-SPと呼ばれる新しいデータセットを使って検証されている。
この結果から,各ベンチマークにおける最先端性能と,61種類のホアックスの時間経過に伴う進化の有用な解析結果が得られた。
論文 参考訳(メタデータ) (2021-10-27T15:44:54Z) - An Investigation And Insight Into Terrorism In Nigeria [0.0]
本稿では,1970年から2019年までのナイジェリアにおけるテロ活動について検討する。
テロ攻撃の発生、標的の地域、そしてそのような攻撃の成功率と失敗率に注目している。
論文 参考訳(メタデータ) (2021-09-22T20:22:43Z) - Learning future terrorist targets through temporal meta-graphs [8.813290741555994]
本稿では,時間的メタグラフと深層学習を用いて将来のテロリストの標的を予測することを提案する。
我々は、各次元における各特徴の時間的中心性を測定する2日間の時系列を導出する。
テロリスト俳優の戦略行動の文脈で問題を定式化することで、これらの多変量時系列シーケンスは、選択されるリスクが最も高いターゲットタイプを知るために利用される。
論文 参考訳(メタデータ) (2021-04-21T08:09:57Z) - TextHide: Tackling Data Privacy in Language Understanding Tasks [54.11691303032022]
TextHideは、トレーニングを遅くしたり、精度を下げることなく、プライバシー上のリスクを軽減する。
すべての参加者は、盗聴攻撃者がプライベートテキストデータを復元するのを防ぐために、簡単な暗号化ステップを追加する必要がある。
我々は、GLUEベンチマーク上でTextHideを評価し、TextHideが共有勾配や表現に対する攻撃を効果的に防御できることを示す。
論文 参考訳(メタデータ) (2020-10-12T22:22:15Z) - Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News [57.9843300852526]
我々は、画像やキャプションを含む機械生成ニュースに対して、より現実的で挑戦的な対策を導入する。
敵が悪用できる可能性のある弱点を特定するために、4つの異なる種類の生成された記事からなるNeuralNewsデータセットを作成します。
ユーザ実験から得られた貴重な知見に加えて,視覚的意味的不整合の検出にもとづく比較的効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-16T14:13:15Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。