Ethical Framework for Harnessing the Power of AI in Healthcare and
Beyond
- URL: http://arxiv.org/abs/2309.00064v1
- Date: Thu, 31 Aug 2023 18:12:12 GMT
- Title: Ethical Framework for Harnessing the Power of AI in Healthcare and
Beyond
- Authors: Sidra Nasir, Rizwan Ahmed Khan, Samita Bai
- Abstract summary: This comprehensive research article rigorously investigates the ethical dimensions intricately linked to the rapid evolution of AI technologies.
Central to this article is the proposition of a conscientious AI framework, meticulously crafted to accentuate values of transparency, equity, answerability, and a human-centric orientation.
The article unequivocally accentuates the pressing need for globally standardized AI ethics principles and frameworks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the past decade, the deployment of deep learning (Artificial Intelligence
(AI)) methods has become pervasive across a spectrum of real-world
applications, often in safety-critical contexts. This comprehensive research
article rigorously investigates the ethical dimensions intricately linked to
the rapid evolution of AI technologies, with a particular focus on the
healthcare domain. Delving deeply, it explores a multitude of facets including
transparency, adept data management, human oversight, educational imperatives,
and international collaboration within the realm of AI advancement. Central to
this article is the proposition of a conscientious AI framework, meticulously
crafted to accentuate values of transparency, equity, answerability, and a
human-centric orientation. The second contribution of the article is the
in-depth and thorough discussion of the limitations inherent to AI systems. It
astutely identifies potential biases and the intricate challenges of navigating
multifaceted contexts. Lastly, the article unequivocally accentuates the
pressing need for globally standardized AI ethics principles and frameworks.
Simultaneously, it aptly illustrates the adaptability of the ethical framework
proposed herein, positioned skillfully to surmount emergent challenges.
Related papers
- Trustworthy and Responsible AI for Human-Centric Autonomous Decision-Making Systems [2.444630714797783]
We review and discuss the intricacies of AI biases, definitions, methods of detection and mitigation, and metrics for evaluating bias.
We also discuss open challenges with regard to the trustworthiness and widespread application of AI across diverse domains of human-centric decision making.
arXiv Detail & Related papers (2024-08-28T06:04:25Z) - Responsible Artificial Intelligence: A Structured Literature Review [0.0]
The EU has recently issued several publications emphasizing the necessity of trust in AI.
This highlights the urgent need for international regulation.
This paper introduces a comprehensive and, to our knowledge, the first unified definition of responsible AI.
arXiv Detail & Related papers (2024-03-11T17:01:13Z) - POLARIS: A framework to guide the development of Trustworthy AI systems [3.02243271391691]
There is a significant gap between high-level AI ethics principles and low-level concrete practices for AI professionals.
We develop a novel holistic framework for Trustworthy AI - designed to bridge the gap between theory and practice.
Our goal is to empower AI professionals to confidently navigate the ethical dimensions of Trustworthy AI.
arXiv Detail & Related papers (2024-02-08T01:05:16Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Towards Trustworthy Artificial Intelligence for Equitable Global Health [22.262855329743985]
AI can potentially transform global health, but algorithmic bias can exacerbate social inequities and disparity.
FairMI4GH aimed to stimulate dialogue, facilitate knowledge transfer, and spark innovative solutions.
The need to mitigate data biases from the research design stage, adopt a human-centered approach, and advocate for AI transparency was recognized.
arXiv Detail & Related papers (2023-09-10T17:22:41Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - A Transparency Index Framework for AI in Education [1.776308321589895]
The main contribution of this study is that it highlights the importance of transparency in developing AI-powered educational technologies.
We demonstrate how transparency enables the implementation of other ethical AI dimensions in Education like interpretability, accountability, and safety.
arXiv Detail & Related papers (2022-05-09T10:10:47Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.