論文の概要: TurboGP: A flexible and advanced python based GP library
- arxiv url: http://arxiv.org/abs/2309.00149v1
- Date: Thu, 31 Aug 2023 21:50:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-04 15:12:23.032969
- Title: TurboGP: A flexible and advanced python based GP library
- Title(参考訳): turbogp: 柔軟性と高度なpythonベースのgpライブラリ
- Authors: Lino Rodriguez-Coayahuitl, Alicia Morales-Reyes, Hugo Jair Escalante
- Abstract要約: TurboGPはPythonで完全に書かれた遺伝的プログラミング(GP)ライブラリである。
TurboGPは、島や細胞集団計画、さまざまな種類の遺伝子操作(移行、保護されたクロスオーバー)、オンライン学習など、他のGP実装では利用できないモダンな機能を実装している。
- 参考スコア(独自算出の注目度): 6.639039715070865
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce TurboGP, a Genetic Programming (GP) library fully written in
Python and specifically designed for machine learning tasks. TurboGP implements
modern features not available in other GP implementations, such as island and
cellular population schemes, different types of genetic operations (migration,
protected crossovers), online learning, among other features. TurboGP's most
distinctive characteristic is its native support for different types of GP
nodes to allow different abstraction levels, this makes TurboGP particularly
useful for processing a wide variety of data sources.
- Abstract(参考訳): 我々はPythonで完全に記述され、特に機械学習タスク用に設計されたTurboGPについて紹介する。
TurboGPは、島や細胞集団計画、さまざまな種類の遺伝子操作(移行、保護されたクロスオーバー)、オンライン学習など、他のGP実装では利用できないモダンな機能を実装している。
TurboGPの最も特徴的な特徴は、異なる抽象化レベルを実現するために異なるタイプのGPノードをネイティブにサポートしていることであり、TurboGPは特に様々なデータソースを処理するのに有用である。
関連論文リスト
- Solving Novel Program Synthesis Problems with Genetic Programming using
Parametric Polymorphism [0.0]
Code-build Genetic Programming (CBGP) は、スタックベースのコンパイルと形式型システムを用いて、線形ゲノムからタイプセーフなプログラムをコンパイルする。
CBGPは、これらの性質の全てで問題を解くことができ、そこでは、我々が知っている他のすべてのGP系が、これらの性質の問題を考慮できないような制限を持っている。
論文 参考訳(メタデータ) (2023-06-08T00:10:07Z) - Interactive Segmentation as Gaussian Process Classification [58.44673380545409]
クリックベースのインタラクティブセグメンテーション(IS)は、ユーザインタラクション下で対象オブジェクトを抽出することを目的としている。
現在のディープラーニング(DL)ベースの手法のほとんどは、主にセマンティックセグメンテーションの一般的なパイプラインに従っている。
本稿では,各画像上でガウス過程(GP)に基づく画素単位のバイナリ分類モデルとしてISタスクを定式化することを提案する。
論文 参考訳(メタデータ) (2023-02-28T14:01:01Z) - Weighted Ensembles for Active Learning with Adaptivity [60.84896785303314]
本稿では,ラベル付きデータに漸進的に適応した重み付きGPモデルのアンサンブルについて述べる。
この新しいEGPモデルに基づいて、不確実性および不一致ルールに基づいて、一連の取得関数が出現する。
適応的に重み付けされたEGPベースの取得関数のアンサンブルも、さらなる性能向上のために導入されている。
論文 参考訳(メタデータ) (2022-06-10T11:48:49Z) - Functional Code Building Genetic Programming [0.0]
Code Building Genetic Programming (CBGP)は、最近導入された汎用プログラム合成のためのGP法である。
関数型プログラミング言語とHendley-Milner型システムは,型安全性プログラムの進化に有効であることを示す。
論文 参考訳(メタデータ) (2022-06-09T15:22:33Z) - Scaling Gaussian Process Optimization by Evaluating a Few Unique
Candidates Multiple Times [119.41129787351092]
GPに基づく逐次ブラックボックス最適化は,複数の評価ステップの候補解に固執することで効率よく行うことができることを示す。
GP-UCB と GP-EI の2つのよく確立されたGP-Opt アルゴリズムを改良し,バッチ化された GP-Opt の規則を適応させる。
論文 参考訳(メタデータ) (2022-01-30T20:42:14Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
乱変数ベクトルの各成分上で動作し,パラメータを全て共有する可逆なODEベースのマッピングを提案する。
NGGPは、様々なベンチマークとアプリケーションに対する競合する最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-10-26T10:45:25Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
本稿では,EGPメタラーナーがGP学習者のインクリメンタルアンサンブル(IE-) GPフレームワークを提案し,それぞれが所定のカーネル辞書に属するユニークなカーネルを持つ。
各GP専門家は、ランダムな特徴ベースの近似を利用してオンライン予測とモデル更新を行い、そのスケーラビリティを生かし、EGPメタラーナーはデータ適応重みを生かし、熟練者ごとの予測を合成する。
新たなIE-GPは、EGPメタラーナーおよび各GP学習者内における構造化力学をモデル化することにより、時間変化関数に対応するように一般化される。
論文 参考訳(メタデータ) (2021-10-13T15:11:25Z) - Solving classification problems using Traceless Genetic Programming [0.0]
トレースレス遺伝的プログラミング(TGP)は、現実の難解な問題を解くために用いられる新しい遺伝的プログラミング(GP)である。
本稿では, ProBEN1 から抽出した実世界の分類問題の解法として TGP を用いる。
論文 参考訳(メタデータ) (2021-10-07T06:13:07Z) - Using Traceless Genetic Programming for Solving Multiobjective
Optimization Problems [1.9493449206135294]
トレーレス・ジェネティック・プログラミング(Traceless Genetic Programming、TGP)は、プログラム自体よりもプログラムの出力に焦点をあてる場合に使われる遺伝的プログラミング(GP)の変種である。
TGPと組み合わせて2つの遺伝子操作子(クロスオーバーと挿入)が使用される。
数値実験により、TGPは非常に高速かつ十分に検討されたテスト問題を解くことができることが示された。
論文 参考訳(メタデータ) (2021-10-07T05:55:55Z) - Solving even-parity problems using traceless genetic programming [0.0]
TGPは、個人を構築するためのテクニックと、個人を表現するテクニックを組み合わせたハイブリッド技術である。
TGPと組み合わせて2つの遺伝子操作子(クロスオーバーと挿入)が使用される。
TGPは、均一性問題に対するデジタル回路の進化に応用される。
論文 参考訳(メタデータ) (2021-10-04T13:23:32Z) - MOGPTK: The Multi-Output Gaussian Process Toolkit [71.08576457371433]
ガウス過程(GP)を用いたマルチチャネルデータモデリングのためのPythonパッケージMOGPTKを提案する。
このツールキットの目的は、研究者、データサイエンティスト、実践者にもMOGP(multi-output GP)モデルを利用できるようにすることである。
論文 参考訳(メタデータ) (2020-02-09T23:34:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。