DARC: Distribution-Aware Re-Coloring Model for Generalizable Nucleus
Segmentation
- URL: http://arxiv.org/abs/2309.00188v1
- Date: Fri, 1 Sep 2023 01:01:13 GMT
- Title: DARC: Distribution-Aware Re-Coloring Model for Generalizable Nucleus
Segmentation
- Authors: Shengcong Chen, Changxing Ding, Dacheng Tao, Hao Chen
- Abstract summary: We argue that domain gaps can also be caused by different foreground (nucleus)-background ratios.
First, we introduce a re-coloring method that relieves dramatic image color variations between different domains.
Second, we propose a new instance normalization method that is robust to the variation in the foreground-background ratios.
- Score: 68.43628183890007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nucleus segmentation is usually the first step in pathological image analysis
tasks. Generalizable nucleus segmentation refers to the problem of training a
segmentation model that is robust to domain gaps between the source and target
domains. The domain gaps are usually believed to be caused by the varied image
acquisition conditions, e.g., different scanners, tissues, or staining
protocols. In this paper, we argue that domain gaps can also be caused by
different foreground (nucleus)-background ratios, as this ratio significantly
affects feature statistics that are critical to normalization layers. We
propose a Distribution-Aware Re-Coloring (DARC) model that handles the above
challenges from two perspectives. First, we introduce a re-coloring method that
relieves dramatic image color variations between different domains. Second, we
propose a new instance normalization method that is robust to the variation in
foreground-background ratios. We evaluate the proposed methods on two H$\&$E
stained image datasets, named CoNSeP and CPM17, and two IHC stained image
datasets, called DeepLIIF and BC-DeepLIIF. Extensive experimental results
justify the effectiveness of our proposed DARC model. Codes are available at
\url{https://github.com/csccsccsccsc/DARC
Related papers
- Domain Generalization for Endoscopic Image Segmentation by Disentangling Style-Content Information and SuperPixel Consistency [1.4991956341367338]
We propose an approach for style-content disentanglement using instance normalization and instance selective whitening (ISW) for improved domain generalization.
We evaluate our approach on two datasets: EndoUDA Barrett's Esophagus and EndoUDA polyps, and compare its performance with three state-of-the-art (SOTA) methods.
arXiv Detail & Related papers (2024-09-19T04:10:04Z) - Multi-domain stain normalization for digital pathology: A
cycle-consistent adversarial network for whole slide images [0.0]
We propose MultiStain-CycleGAN, a multi-domain approach to stain normalization based on CycleGAN.
Our modifications to CycleGAN allow us to normalize images of different origins without retraining or using different models.
arXiv Detail & Related papers (2023-01-23T13:34:49Z) - Few-shot Adaptive Object Detection with Cross-Domain CutMix [5.432990262699911]
In object detection, data amount and cost are a trade-off, and collecting a large amount of data in a specific domain is labor intensive.
We propose a data synthesis method that can solve the large domain gap problem.
The proposed method achieves higher accuracy than conventional methods in a very different domain problem setting.
arXiv Detail & Related papers (2022-08-31T01:26:10Z) - SePiCo: Semantic-Guided Pixel Contrast for Domain Adaptive Semantic
Segmentation [52.62441404064957]
Domain adaptive semantic segmentation attempts to make satisfactory dense predictions on an unlabeled target domain by utilizing the model trained on a labeled source domain.
Many methods tend to alleviate noisy pseudo labels, however, they ignore intrinsic connections among cross-domain pixels with similar semantic concepts.
We propose Semantic-Guided Pixel Contrast (SePiCo), a novel one-stage adaptation framework that highlights the semantic concepts of individual pixel.
arXiv Detail & Related papers (2022-04-19T11:16:29Z) - Unsupervised Domain Adaptation with Contrastive Learning for OCT
Segmentation [49.59567529191423]
We propose a novel semi-supervised learning framework for segmentation of volumetric images from new unlabeled domains.
We jointly use supervised and contrastive learning, also introducing a contrastive pairing scheme that leverages similarity between nearby slices in 3D.
arXiv Detail & Related papers (2022-03-07T19:02:26Z) - Beyond ImageNet Attack: Towards Crafting Adversarial Examples for
Black-box Domains [80.11169390071869]
Adversarial examples have posed a severe threat to deep neural networks due to their transferable nature.
We propose a Beyond ImageNet Attack (BIA) to investigate the transferability towards black-box domains.
Our methods outperform state-of-the-art approaches by up to 7.71% (towards coarse-grained domains) and 25.91% (towards fine-grained domains) on average.
arXiv Detail & Related papers (2022-01-27T14:04:27Z) - Unsupervised Domain Adaptation for Cross-Modality Retinal Vessel
Segmentation via Disentangling Representation Style Transfer and
Collaborative Consistency Learning [3.9562534927482704]
We propose DCDA, a novel cross-modality unsupervised domain adaptation framework for tasks with large domain shifts.
Our framework achieves Dice scores close to target-trained oracle both from OCTA to OCT and from OCT to OCTA, significantly outperforming other state-of-the-art methods.
arXiv Detail & Related papers (2022-01-13T07:03:16Z) - Causality-inspired Single-source Domain Generalization for Medical Image
Segmentation [12.697945585457441]
We propose a simple data augmentation approach to expose a segmentation model to synthesized domain-shifted training examples.
Specifically, 1) to make the deep model robust to discrepancies in image intensities and textures, we employ a family of randomly-weighted shallow networks.
We remove spurious correlations among objects in an image that might be taken by the network as domain-specific clues for making predictions, and they may break on unseen domains.
arXiv Detail & Related papers (2021-11-24T14:45:17Z) - DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic
Segmentation [97.74059510314554]
Unsupervised domain adaptation (UDA) for semantic segmentation aims to adapt a segmentation model trained on the labeled source domain to the unlabeled target domain.
Existing methods try to learn domain invariant features while suffering from large domain gaps.
We propose a novel Dual Soft-Paste (DSP) method in this paper.
arXiv Detail & Related papers (2021-07-20T16:22:40Z) - TriGAN: Image-to-Image Translation for Multi-Source Domain Adaptation [82.52514546441247]
We propose the first approach for Multi-Source Domain Adaptation (MSDA) based on Generative Adversarial Networks.
Our method is inspired by the observation that the appearance of a given image depends on three factors: the domain, the style and the content.
We test our approach using common MSDA benchmarks, showing that it outperforms state-of-the-art methods.
arXiv Detail & Related papers (2020-04-19T05:07:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.