Multi-domain stain normalization for digital pathology: A
cycle-consistent adversarial network for whole slide images
- URL: http://arxiv.org/abs/2301.09431v1
- Date: Mon, 23 Jan 2023 13:34:49 GMT
- Title: Multi-domain stain normalization for digital pathology: A
cycle-consistent adversarial network for whole slide images
- Authors: Martin J. Hetz, Tabea-Clara Bucher, Titus J. Brinker
- Abstract summary: We propose MultiStain-CycleGAN, a multi-domain approach to stain normalization based on CycleGAN.
Our modifications to CycleGAN allow us to normalize images of different origins without retraining or using different models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The variation in histologic staining between different medical centers is one
of the most profound challenges in the field of computer-aided diagnosis. The
appearance disparity of pathological whole slide images causes algorithms to
become less reliable, which in turn impedes the wide-spread applicability of
downstream tasks like cancer diagnosis. Furthermore, different stainings lead
to biases in the training which in case of domain shifts negatively affect the
test performance. Therefore, in this paper we propose MultiStain-CycleGAN, a
multi-domain approach to stain normalization based on CycleGAN. Our
modifications to CycleGAN allow us to normalize images of different origins
without retraining or using different models. We perform an extensive
evaluation of our method using various metrics and compare it to commonly used
methods that are multi-domain capable. First, we evaluate how well our method
fools a domain classifier that tries to assign a medical center to an image.
Then, we test our normalization on the tumor classification performance of a
downstream classifier. Furthermore, we evaluate the image quality of the
normalized images using the Structural similarity index and the ability to
reduce the domain shift using the Fr\'echet inception distance. We show that
our method proves to be multi-domain capable, provides the highest image
quality among the compared methods, and can most reliably fool the domain
classifier while keeping the tumor classifier performance high. By reducing the
domain influence, biases in the data can be removed on the one hand and the
origin of the whole slide image can be disguised on the other, thus enhancing
patient data privacy.
Related papers
- Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - DARC: Distribution-Aware Re-Coloring Model for Generalizable Nucleus
Segmentation [68.43628183890007]
We argue that domain gaps can also be caused by different foreground (nucleus)-background ratios.
First, we introduce a re-coloring method that relieves dramatic image color variations between different domains.
Second, we propose a new instance normalization method that is robust to the variation in the foreground-background ratios.
arXiv Detail & Related papers (2023-09-01T01:01:13Z) - Cross-modulated Few-shot Image Generation for Colorectal Tissue
Classification [58.147396879490124]
Our few-shot generation method, named XM-GAN, takes one base and a pair of reference tissue images as input and generates high-quality yet diverse images.
To the best of our knowledge, we are the first to investigate few-shot generation in colorectal tissue images.
arXiv Detail & Related papers (2023-04-04T17:50:30Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - Unsupervised Domain Adaptation Using Feature Disentanglement And GCNs
For Medical Image Classification [5.6512908295414]
We propose an unsupervised domain adaptation approach that uses graph neural networks and, disentangled semantic and domain invariant structural features.
We test the proposed method for classification on two challenging medical image datasets with distribution shifts.
Experiments show our method achieves state-of-the-art results compared to other domain adaptation methods.
arXiv Detail & Related papers (2022-06-27T09:02:16Z) - MultiPathGAN: Structure Preserving Stain Normalization using
Unsupervised Multi-domain Adversarial Network with Perception Loss [10.043946236248392]
Histopathology relies on the analysis of microscopic tissue images to diagnose disease.
We introduce an unsupervised adversarial network to translate (and hence normalize) whole slide images across multiple data acquisition domains.
arXiv Detail & Related papers (2022-04-20T20:48:17Z) - Hospital-Agnostic Image Representation Learning in Digital Pathology [0.7412445894287709]
Whole Slide Images (WSIs) in digital pathology are used to diagnose cancer subtypes.
The difference in procedures to acquire WSIs at various trial sites gives rise to variability in the histopathology images.
A domain generalization technique is leveraged in this study to improve the generalization capability of a Deep Neural Network (DNN)
arXiv Detail & Related papers (2022-04-05T11:45:46Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z) - Flow-based Deformation Guidance for Unpaired Multi-Contrast MRI
Image-to-Image Translation [7.8333615755210175]
In this paper, we introduce a novel approach to unpaired image-to-image translation based on the invertible architecture.
We utilize the temporal information between consecutive slices to provide more constraints to the optimization for transforming one domain to another in unpaired medical images.
arXiv Detail & Related papers (2020-12-03T09:10:22Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.