Recovery of a generic local Hamiltonian from a degenerate steady state
- URL: http://arxiv.org/abs/2309.00334v2
- Date: Mon, 18 Sep 2023 02:57:07 GMT
- Title: Recovery of a generic local Hamiltonian from a degenerate steady state
- Authors: Jing Zhou and D. L. Zhou
- Abstract summary: Hamiltonian Learning (HL) is essential for validating quantum systems in quantum computing.
HL success depends on the Hamiltonian model and steady state.
We analyze HL for a specific type of steady state composed of eigenstates with degenerate mixing weight.
- Score: 11.567029926262476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hamiltonian Learning (HL) is essential for validating quantum systems in
quantum computing. Not all Hamiltonians can be uniquely recovered from a steady
state. HL success depends on the Hamiltonian model and steady state. Here, we
analyze HL for a specific type of steady state composed of eigenstates with
degenerate mixing weight, making these Hamiltonian's eigenstates
indistinguishable. To overcome this challenge, we utilize the orthogonality
relationship between the eigenstate space and its complement space,
constructing the orthogonal space equation. By counting the number of linearly
independent equations derived from a steady state, we determine the
recoverability of a generic local Hamiltonian. Our scheme is applicable for
generic local Hamiltonians under various steady state, therefore offering a way
of measuring the degree to which a steady state characterizes a Hamiltonian.
Related papers
- Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Determining non-Hermitian parent Hamiltonian from a single eigenstate [0.0]
We show that it can be sufficient to determine a non-Hermitian Hamiltonian from a single right or left eigenstate.
Our scheme favours non-Hermitian Hamiltonian learning on experimental quantum systems.
arXiv Detail & Related papers (2024-08-28T13:23:47Z) - Coherence generation with Hamiltonians [44.99833362998488]
We explore methods to generate quantum coherence through unitary evolutions.
This quantity is defined as the maximum derivative of coherence that can be achieved by a Hamiltonian.
We identify the quantum states that lead to the largest coherence derivative induced by the Hamiltonian.
arXiv Detail & Related papers (2024-02-27T15:06:40Z) - A polynomial-time dissipation-based quantum algorithm for solving the ground states of a class of classically hard Hamiltonians [4.500918096201963]
We give a complexity-time quantum algorithm for solving the ground states of a class of classically hard Hamiltonians.
We show that the Hamiltonians that can be efficiently solved by our algorithms contain classically hard instances.
arXiv Detail & Related papers (2024-01-25T05:01:02Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
We develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations.
We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix.
A quantum algorithm to simulate the dynamics of the density matrix is proposed.
arXiv Detail & Related papers (2023-06-14T23:08:51Z) - Demonstration of the excited-state search on the D-wave quantum annealer [0.0]
We demonstrate the excited-state search by using the D-wave processor.
We adopt a two-qubit Ising model as the problem Hamiltonian and succeed to prepare the excited state.
Our results pave the way for new applications of quantum annealers to use the excited states.
arXiv Detail & Related papers (2023-05-25T12:12:11Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
A candidate application for quantum computers is to simulate the low-temperature properties of quantum systems.
This paper shows that, for most random Hamiltonians, the maximally mixed state is a sufficiently good trial state.
Phase estimation efficiently prepares states with energy arbitrarily close to the ground energy.
arXiv Detail & Related papers (2023-02-07T10:57:36Z) - Simultaneous Stoquasticity [0.0]
Stoquastic Hamiltonians play a role in the computational complexity of the local Hamiltonian problem.
We address the question of whether two or more Hamiltonians may be made simultaneously stoquastic via a unitary transformation.
arXiv Detail & Related papers (2022-02-17T19:08:30Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Does causal dynamics imply local interactions? [0.0]
We consider quantum systems with causal dynamics in discrete spacetimes, also known as quantum cellular automata (QCA)
We ask if any of the Hamiltonians generating a QCA unitary is local in some sense, and we obtain two very different answers.
arXiv Detail & Related papers (2020-06-18T17:40:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.