Robust Point Cloud Processing through Positional Embedding
- URL: http://arxiv.org/abs/2309.00339v1
- Date: Fri, 1 Sep 2023 08:47:52 GMT
- Title: Robust Point Cloud Processing through Positional Embedding
- Authors: Jianqiao Zheng, Xueqian Li, Sameera Ramasinghe, Simon Lucey
- Abstract summary: Methods like PointNet, or the more recent point cloud transformer -- and its variants -- all employ learned per-point embeddings.
We explore the role of an analytical per-point embedding based on the criterion of bandwidth.
We present compelling results across downstream tasks such as point cloud classification and registration with several categories of OOD noise.
- Score: 46.561004400860945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: End-to-end trained per-point embeddings are an essential ingredient of any
state-of-the-art 3D point cloud processing such as detection or alignment.
Methods like PointNet, or the more recent point cloud transformer -- and its
variants -- all employ learned per-point embeddings. Despite impressive
performance, such approaches are sensitive to out-of-distribution (OOD) noise
and outliers. In this paper, we explore the role of an analytical per-point
embedding based on the criterion of bandwidth. The concept of bandwidth enables
us to draw connections with an alternate per-point embedding -- positional
embedding, particularly random Fourier features. We present compelling robust
results across downstream tasks such as point cloud classification and
registration with several categories of OOD noise.
Related papers
- P2P-Bridge: Diffusion Bridges for 3D Point Cloud Denoising [81.92854168911704]
We tackle the task of point cloud denoising through a novel framework that adapts Diffusion Schr"odinger bridges to points clouds.
Experiments on object datasets show that P2P-Bridge achieves significant improvements over existing methods.
arXiv Detail & Related papers (2024-08-29T08:00:07Z) - PIVOT-Net: Heterogeneous Point-Voxel-Tree-based Framework for Point
Cloud Compression [8.778300313732027]
We propose a heterogeneous point cloud compression (PCC) framework.
We unify typical point cloud representations -- point-based, voxel-based, and tree-based representations -- and their associated backbones.
We augment the framework with a proposed context-aware upsampling for decoding and an enhanced voxel transformer for feature aggregation.
arXiv Detail & Related papers (2024-02-11T16:57:08Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - HybridFusion: LiDAR and Vision Cross-Source Point Cloud Fusion [15.94976936555104]
We propose a cross-source point cloud fusion algorithm called HybridFusion.
It can register cross-source dense point clouds from different viewing angle in outdoor large scenes.
The proposed approach is evaluated comprehensively through qualitative and quantitative experiments.
arXiv Detail & Related papers (2023-04-10T10:54:54Z) - REGTR: End-to-end Point Cloud Correspondences with Transformers [79.52112840465558]
We conjecture that attention mechanisms can replace the role of explicit feature matching and RANSAC.
We propose an end-to-end framework to directly predict the final set of correspondences.
Our approach achieves state-of-the-art performance on 3DMatch and ModelNet benchmarks.
arXiv Detail & Related papers (2022-03-28T06:01:00Z) - PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features [91.2054994193218]
We propose a point-set learning framework PRIN, focusing on rotation invariant feature extraction in point clouds analysis.
In addition, we extend PRIN to a sparse version called SPRIN, which directly operates on sparse point clouds.
Results show that, on the dataset with randomly rotated point clouds, SPRIN demonstrates better performance than state-of-the-art methods without any data augmentation.
arXiv Detail & Related papers (2021-02-24T06:44:09Z) - SoftPoolNet: Shape Descriptor for Point Cloud Completion and
Classification [93.54286830844134]
We propose a method for 3D object completion and classification based on point clouds.
For the decoder stage, we propose regional convolutions, a novel operator aimed at maximizing the global activation entropy.
We evaluate our approach on different 3D tasks such as object completion and classification, achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2020-08-17T14:32:35Z) - Point Set Voting for Partial Point Cloud Analysis [26.31029112502835]
techniques for point cloud classification and segmentation have in recent years achieved incredible performance driven in part by leveraging large synthetic datasets.
This paper proposes a general model for partial point clouds analysis wherein the latent feature encoding a complete point clouds is inferred by applying a local point set voting strategy.
arXiv Detail & Related papers (2020-07-09T03:37:31Z) - PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks
with Adaptive Sampling [39.36827481232841]
We present a novel end-to-end network for robust point clouds processing, named PointASNL.
Key component in our approach is the adaptive sampling (AS) module.
Our AS module can not only benefit the feature learning of point clouds, but also ease the biased effect of outliers.
arXiv Detail & Related papers (2020-03-01T14:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.