Large Content And Behavior Models To Understand, Simulate, And Optimize Content And Behavior
- URL: http://arxiv.org/abs/2309.00359v4
- Date: Sat, 16 Mar 2024 14:02:45 GMT
- Title: Large Content And Behavior Models To Understand, Simulate, And Optimize Content And Behavior
- Authors: Ashmit Khandelwal, Aditya Agrawal, Aanisha Bhattacharyya, Yaman K Singla, Somesh Singh, Uttaran Bhattacharya, Ishita Dasgupta, Stefano Petrangeli, Rajiv Ratn Shah, Changyou Chen, Balaji Krishnamurthy,
- Abstract summary: We introduce the receivers' "behavior tokens," such as shares, likes, clicks, purchases, and retweets, in the LLM's training corpora to optimize content for the receivers and predict their behaviors.
Other than showing similar performance to LLMs on content understanding tasks, our trained models show generalization capabilities on the behavior dimension.
We call these models Large Content and Behavior Models (LCBMs)
- Score: 66.4024040742149
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Shannon and Weaver's seminal information theory divides communication into three levels: technical, semantic, and effectiveness. While the technical level deals with the accurate reconstruction of transmitted symbols, the semantic and effectiveness levels deal with the inferred meaning and its effect on the receiver. Large Language Models (LLMs), with their wide generalizability, make some progress towards the second level. However, LLMs and other communication models are not conventionally designed for predicting and optimizing communication for desired receiver behaviors and intents. As a result, the effectiveness level remains largely untouched by modern communication systems. In this paper, we introduce the receivers' "behavior tokens," such as shares, likes, clicks, purchases, and retweets, in the LLM's training corpora to optimize content for the receivers and predict their behaviors. Other than showing similar performance to LLMs on content understanding tasks, our trained models show generalization capabilities on the behavior dimension for behavior simulation, content simulation, behavior understanding, and behavior domain adaptation. We show results on all these capabilities using a wide range of tasks on three corpora. We call these models Large Content and Behavior Models (LCBMs). Further, to spur more research on LCBMs, we release our new Content Behavior Corpus (CBC), a repository containing communicator, message, and corresponding receiver behavior (https://behavior-in-the-wild.github.io/LCBM).
Related papers
- Trustworthy Image Semantic Communication with GenAI: Explainablity, Controllability, and Efficiency [59.15544887307901]
Image semantic communication (ISC) has garnered significant attention for its potential to achieve high efficiency in visual content transmission.
Existing ISC systems based on joint source-channel coding face challenges in interpretability, operability, and compatibility.
We propose a novel trustworthy ISC framework that employs Generative Artificial Intelligence (GenAI) for multiple downstream inference tasks.
arXiv Detail & Related papers (2024-08-07T14:32:36Z) - DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
In-context learning (ICL) allows transformer-based language models to learn a specific task with a few "task demonstrations" without updating their parameters.
We propose an influence function-based attribution technique, DETAIL, that addresses the specific characteristics of ICL.
We experimentally prove the wide applicability of DETAIL by showing our attribution scores obtained on white-box models are transferable to black-box models in improving model performance.
arXiv Detail & Related papers (2024-05-22T15:52:52Z) - Teaching Human Behavior Improves Content Understanding Abilities Of LLMs [56.574610730939646]
Training LLMs on receiver behavior can help improve their content-understanding abilities.
We show this performance increase over 46 video and image understanding tasks over 26 benchmark datasets.
We release the receiver behavior cleaned comments and likes of 750k images and videos collected from multiple platforms along with our instruction-tuning data.
arXiv Detail & Related papers (2024-05-02T02:04:01Z) - Verco: Learning Coordinated Verbal Communication for Multi-agent Reinforcement Learning [42.27106057372819]
We propose a novel multi-agent reinforcement learning algorithm that embeds large language models into agents.
The framework has a message module and an action module.
Experiments conducted on the Overcooked game demonstrate our method significantly enhances the learning efficiency and performance of existing methods.
arXiv Detail & Related papers (2024-04-27T05:10:33Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - Towards Probing Contact Center Large Language Models [11.018095513653758]
Fine-tuning large language models (LLMs) with domain-specific instructions has emerged as an effective method to enhance their domain-specific understanding.
We benchmark the fundamental characteristics learned by contact-center (CC) specific instruction fine-tuned LLMs with out-of-the-box (OOB) LLMs.
Our findings reveal remarkable effectiveness of CC-LLMs on the in-domain downstream tasks, with improvement in response acceptability by over 48% compared to OOB-LLMs.
arXiv Detail & Related papers (2023-12-26T07:34:39Z) - Context-aware Communication for Multi-agent Reinforcement Learning [6.109127175562235]
We develop a context-aware communication scheme for multi-agent reinforcement learning (MARL)
In the first stage, agents exchange coarse representations in a broadcast fashion, providing context for the second stage.
Following this, agents utilize attention mechanisms in the second stage to selectively generate messages personalized for the receivers.
To evaluate the effectiveness of CACOM, we integrate it with both actor-critic and value-based MARL algorithms.
arXiv Detail & Related papers (2023-12-25T03:33:08Z) - What Makes Pre-Trained Visual Representations Successful for Robust
Manipulation? [57.92924256181857]
We find that visual representations designed for manipulation and control tasks do not necessarily generalize under subtle changes in lighting and scene texture.
We find that emergent segmentation ability is a strong predictor of out-of-distribution generalization among ViT models.
arXiv Detail & Related papers (2023-11-03T18:09:08Z) - Prompted Contrast with Masked Motion Modeling: Towards Versatile 3D
Action Representation Learning [33.68311764817763]
We propose Prompted Contrast with Masked Motion Modeling, PCM$rm 3$, for versatile 3D action representation learning.
Our method integrates the contrastive learning and masked prediction tasks in a mutually beneficial manner.
Tests on five downstream tasks under three large-scale datasets are conducted, demonstrating the superior generalization capacity of PCM$rm 3$ compared to the state-of-the-art works.
arXiv Detail & Related papers (2023-08-08T01:27:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.