Declarative Reasoning on Explanations Using Constraint Logic Programming
- URL: http://arxiv.org/abs/2309.00422v1
- Date: Fri, 1 Sep 2023 12:31:39 GMT
- Title: Declarative Reasoning on Explanations Using Constraint Logic Programming
- Authors: Laura State, Salvatore Ruggieri, Franco Turini
- Abstract summary: REASONX is an explanation method based on Constraint Logic Programming (CLP)
We present here the architecture of REASONX, which consists of a Python layer, closer to the user, and a CLP layer.
REASONX's core execution engine is a Prolog meta-program with declarative semantics in terms of logic theories.
- Score: 12.039469573641217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explaining opaque Machine Learning (ML) models is an increasingly relevant
problem. Current explanation in AI (XAI) methods suffer several shortcomings,
among others an insufficient incorporation of background knowledge, and a lack
of abstraction and interactivity with the user. We propose REASONX, an
explanation method based on Constraint Logic Programming (CLP). REASONX can
provide declarative, interactive explanations for decision trees, which can be
the ML models under analysis or global/local surrogate models of any black-box
model. Users can express background or common sense knowledge using linear
constraints and MILP optimization over features of factual and contrastive
instances, and interact with the answer constraints at different levels of
abstraction through constraint projection. We present here the architecture of
REASONX, which consists of a Python layer, closer to the user, and a CLP layer.
REASONX's core execution engine is a Prolog meta-program with declarative
semantics in terms of logic theories.
Related papers
- Towards Symbolic XAI -- Explanation Through Human Understandable Logical Relationships Between Features [19.15360328688008]
We propose a framework, called Symbolic XAI, that attributes relevance to symbolic queries expressing logical relationships between input features.
The framework provides an understanding of the model's decision-making process that is both flexible for customization by the user and human-readable.
arXiv Detail & Related papers (2024-08-30T10:52:18Z) - Distance-Restricted Explanations: Theoretical Underpinnings & Efficient Implementation [19.22391463965126]
Some uses of machine learning (ML) involve high-stakes and safety-critical applications.
This paper investigates novel algorithms for scaling up the performance of logic-based explainers.
arXiv Detail & Related papers (2024-05-14T03:42:33Z) - SymbolicAI: A framework for logic-based approaches combining generative models and solvers [9.841285581456722]
We introduce SymbolicAI, a versatile and modular framework employing a logic-based approach to concept learning and flow management in generative processes.
We treat large language models (LLMs) as semantic solvers that execute tasks based on both natural and formal language instructions.
arXiv Detail & Related papers (2024-02-01T18:50:50Z) - Pyreal: A Framework for Interpretable ML Explanations [51.14710806705126]
Pyreal is a system for generating a variety of interpretable machine learning explanations.
Pyreal converts data and explanations between the feature spaces expected by the model, relevant explanation algorithms, and human users.
Our studies demonstrate that Pyreal generates more useful explanations than existing systems.
arXiv Detail & Related papers (2023-12-20T15:04:52Z) - Language Models can be Logical Solvers [99.40649402395725]
We introduce LoGiPT, a novel language model that directly emulates the reasoning processes of logical solvers.
LoGiPT is fine-tuned on a newly constructed instruction-tuning dataset derived from revealing and refining the invisible reasoning process of deductive solvers.
arXiv Detail & Related papers (2023-11-10T16:23:50Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
We propose a holistic graph network (HGN) which deals with context at both discourse level and word level, as the basis for logical reasoning.
Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism.
arXiv Detail & Related papers (2023-06-21T07:34:27Z) - Reason to explain: Interactive contrastive explanations (REASONX) [5.156484100374058]
We present REASONX, an explanation tool based on Constraint Logic Programming (CLP)
REASONX provides interactive contrastive explanations that can be augmented by background knowledge.
It computes factual and constrative decision rules, as well as closest constrative examples.
arXiv Detail & Related papers (2023-05-29T15:13:46Z) - Interpretability at Scale: Identifying Causal Mechanisms in Alpaca [62.65877150123775]
We use Boundless DAS to efficiently search for interpretable causal structure in large language models while they follow instructions.
Our findings mark a first step toward faithfully understanding the inner-workings of our ever-growing and most widely deployed language models.
arXiv Detail & Related papers (2023-05-15T17:15:40Z) - OmniXAI: A Library for Explainable AI [98.07381528393245]
We introduce OmniXAI, an open-source Python library of eXplainable AI (XAI)
It offers omni-way explainable AI capabilities and various interpretable machine learning techniques.
For practitioners, the library provides an easy-to-use unified interface to generate the explanations for their applications.
arXiv Detail & Related papers (2022-06-01T11:35:37Z) - $\partial$-Explainer: Abductive Natural Language Inference via
Differentiable Convex Optimization [2.624902795082451]
This paper presents a novel framework named $partial$-Explainer (Diff-Explainer) that combines the best of both worlds by casting the constrained optimization as part of a deep neural network.
Our experiments show up to $approx 10%$ improvement over non-differentiable solver while still providing explanations for supporting its inference.
arXiv Detail & Related papers (2021-05-07T17:49:19Z) - An Integer Linear Programming Framework for Mining Constraints from Data [81.60135973848125]
We present a general framework for mining constraints from data.
In particular, we consider the inference in structured output prediction as an integer linear programming (ILP) problem.
We show that our approach can learn to solve 9x9 Sudoku puzzles and minimal spanning tree problems from examples without providing the underlying rules.
arXiv Detail & Related papers (2020-06-18T20:09:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.