Towards Symbolic XAI -- Explanation Through Human Understandable Logical Relationships Between Features
- URL: http://arxiv.org/abs/2408.17198v2
- Date: Tue, 1 Oct 2024 11:35:49 GMT
- Title: Towards Symbolic XAI -- Explanation Through Human Understandable Logical Relationships Between Features
- Authors: Thomas Schnake, Farnoush Rezaei Jafari, Jonas Lederer, Ping Xiong, Shinichi Nakajima, Stefan Gugler, Grégoire Montavon, Klaus-Robert Müller,
- Abstract summary: We propose a framework, called Symbolic XAI, that attributes relevance to symbolic queries expressing logical relationships between input features.
The framework provides an understanding of the model's decision-making process that is both flexible for customization by the user and human-readable.
- Score: 19.15360328688008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainable Artificial Intelligence (XAI) plays a crucial role in fostering transparency and trust in AI systems, where traditional XAI approaches typically offer one level of abstraction for explanations, often in the form of heatmaps highlighting single or multiple input features. However, we ask whether abstract reasoning or problem-solving strategies of a model may also be relevant, as these align more closely with how humans approach solutions to problems. We propose a framework, called Symbolic XAI, that attributes relevance to symbolic queries expressing logical relationships between input features, thereby capturing the abstract reasoning behind a model's predictions. The methodology is built upon a simple yet general multi-order decomposition of model predictions. This decomposition can be specified using higher-order propagation-based relevance methods, such as GNN-LRP, or perturbation-based explanation methods commonly used in XAI. The effectiveness of our framework is demonstrated in the domains of natural language processing (NLP), vision, and quantum chemistry (QC), where abstract symbolic domain knowledge is abundant and of significant interest to users. The Symbolic XAI framework provides an understanding of the model's decision-making process that is both flexible for customization by the user and human-readable through logical formulas.
Related papers
- Explainable AI for Enhancing Efficiency of DL-based Channel Estimation [1.0136215038345013]
Support of artificial intelligence based decision-making is a key element in future 6G networks.
In such applications, using AI as black-box models is risky and challenging.
We propose a novel-based XAI-CHEST framework that is oriented toward channel estimation in wireless communications.
arXiv Detail & Related papers (2024-07-09T16:24:21Z) - Reasoning with trees: interpreting CNNs using hierarchies [3.6763102409647526]
We introduce a framework that uses hierarchical segmentation techniques for faithful and interpretable explanations of Convolutional Neural Networks (CNNs)
Our method constructs model-based hierarchical segmentations that maintain the model's reasoning fidelity.
Experiments show that our framework, xAiTrees, delivers highly interpretable and faithful model explanations.
arXiv Detail & Related papers (2024-06-19T06:45:19Z) - AS-XAI: Self-supervised Automatic Semantic Interpretation for CNN [5.42467030980398]
We propose a self-supervised automatic semantic interpretable artificial intelligence (AS-XAI) framework.
It utilizes transparent embedding semantic extraction spaces and row-centered principal component analysis (PCA) for global semantic interpretation of model decisions.
The proposed approach offers broad fine-grained practical applications, including shared semantic interpretation under out-of-distribution categories.
arXiv Detail & Related papers (2023-12-02T10:06:54Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
We introduce a novel neural systems model that integrates attractor dynamics with symbolic representations to model cognitive processes akin to the probabilistic language of thought (PLoT)
Our model segments the continuous representational space into discrete basins, with attractor states corresponding to symbolic sequences, that reflect the semanticity and compositionality characteristic of symbolic systems through unsupervised learning, rather than relying on pre-defined primitives.
This approach establishes a unified framework that integrates both symbolic and sub-symbolic processing through neural dynamics, a neuroplausible substrate with proven expressivity in AI, offering a more comprehensive model that mirrors the complex duality of cognitive operations
arXiv Detail & Related papers (2023-10-03T05:40:56Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
We propose a general bi-level probabilistic graphical reasoning framework called GBPGR.
In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models.
Our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
We propose a holistic graph network (HGN) which deals with context at both discourse level and word level, as the basis for logical reasoning.
Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism.
arXiv Detail & Related papers (2023-06-21T07:34:27Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Rational Shapley Values [0.0]
Most popular tools for post-hoc explainable artificial intelligence (XAI) are either insensitive to context or difficult to summarize.
I introduce emphrational Shapley values, a novel XAI method that synthesizes and extends these seemingly incompatible approaches.
I leverage tools from decision theory and causal modeling to formalize and implement a pragmatic approach that resolves a number of known challenges in XAI.
arXiv Detail & Related papers (2021-06-18T15:45:21Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
We propose the use of hybrid AI methodology as a framework for combining the strengths of data-driven and knowledge-driven approaches.
Specifically, we inherit the concept of neuro-symbolism as a way of using knowledge-bases to guide the learning progress of deep neural networks.
arXiv Detail & Related papers (2020-03-09T15:04:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.