論文の概要: Exact Learning with Tunable Quantum Neural Networks and a Quantum
Example Oracle
- arxiv url: http://arxiv.org/abs/2309.00561v1
- Date: Fri, 1 Sep 2023 16:18:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-04 13:01:52.263943
- Title: Exact Learning with Tunable Quantum Neural Networks and a Quantum
Example Oracle
- Title(参考訳): 可変量子ニューラルネットワークによるエクササイズ学習と量子実例Oracle
- Authors: Viet Pham Ngoc and Herbert Wiklicky
- Abstract要約: 量子完全学習フレームワークにおける可変量子ニューラルネットワークアーキテクチャについて検討する。
本稿では,振幅増幅を用いてネットワークを目標概念に正しく調整する手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we study the tunable quantum neural network architecture in
the quantum exact learning framework with access to a uniform quantum example
oracle. We present an approach that uses amplitude amplification to correctly
tune the network to the target concept. We applied our approach to the class of
positive $k$-juntas and found that $O(n^22^k)$ quantum examples are sufficient
with experimental results seemingly showing that a tighter upper bound is
possible.
- Abstract(参考訳): 本稿では,一様量子例 oracle へのアクセスにより,量子完全学習フレームワークにおける可変量子ニューラルネットワークアーキテクチャについて検討する。
本稿では,振幅増幅を用いてネットワークを目標概念に正しく調整する手法を提案する。
我々は、正の$k$-juntas のクラスにこのアプローチを適用し、$o(n^22^k)$ の量子例が十分であり、より強固な上限が可能であることを示す実験結果が得られた。
関連論文リスト
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
各量子状態に対するゲートの作用を特徴付ける新しい量子ゲート距離を提案する。
提案手法は、経験的量子機械学習の3つの問題において、ベンチマークを著しく上回っている。
論文 参考訳(メタデータ) (2022-06-28T16:23:24Z) - Tunable Quantum Neural Networks in the QPAC-Learning Framework [0.0]
量子確率近似(QPAC)学習フレームワークにおけるチューナブル量子ニューラルネットワークの性能について検討する。
ターゲット概念を近似できるようにネットワークをチューニングするために,振幅増幅に基づくアルゴリズムを考案し,実装した。
数値的な結果から,本手法は単純なクラスから効率的に概念を学習できることが示唆された。
論文 参考訳(メタデータ) (2022-05-03T14:10:15Z) - An unsupervised feature learning for quantum-classical convolutional
network with applications to fault detection [5.609958919699706]
本稿では,量子特徴抽出器の階層構造を学習するために,量子古典的畳み込みネットワークのための単純な教師なし手法を提案する。
提案手法の主な貢献は、量子回路アンサッツにおける量子特性の差を最大化するために、$K$-meansクラスタリングを使用することである。
論文 参考訳(メタデータ) (2021-07-17T03:16:59Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
量子生成逆数ネットワーク(量子GAN, EQ-GAN)のための新しいタイプのアーキテクチャを提案する。
EQ-GANはコヒーレントなエラーに対してさらなる堅牢性を示し、Google Sycamore超伝導量子プロセッサで実験的にEQ-GANの有効性を示す。
論文 参考訳(メタデータ) (2021-04-30T20:38:41Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z) - Solving Quantum Master Equations with Deep Quantum Neural Networks [0.0]
我々は、オープンな量子多体系の混合状態を表現するために、普遍的な量子計算が可能なディープ量子フィードフォワードニューラルネットワークを使用する。
量子ネットワークの特別な構造を所有するこのアプローチは、バレン高原の欠如など、多くの注目すべき特徴を享受している。
論文 参考訳(メタデータ) (2020-08-12T18:00:08Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。