論文の概要: Cross-temporal Detection of Novel Ransomware Campaigns: A Multi-Modal Alert Approach
- arxiv url: http://arxiv.org/abs/2309.00700v1
- Date: Fri, 1 Sep 2023 18:46:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 06:53:05.972501
- Title: Cross-temporal Detection of Novel Ransomware Campaigns: A Multi-Modal Alert Approach
- Title(参考訳): 新規ランサムウェアキャンペーンの時間横断的検出:マルチモーダルアラートアプローチ
- Authors: Sathvik Murli, Dhruv Nandakumar, Prabhat Kumar Kushwaha, Cheng Wang, Christopher Redino, Abdul Rahman, Shalini Israni, Tarun Singh, Edward Bowen,
- Abstract要約: 本研究では,被害者ネットワーク内の攻撃タイムライン表現からランサムウェアを識別する手法を提案する。
複数のアラートソースから開発された悪意あるアクティビティプロファイルは、アラートグラフの構築をサポートする。
- 参考スコア(独自算出の注目度): 6.980894850951229
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a novel approach to identify ransomware campaigns derived from attack timelines representations within victim networks. Malicious activity profiles developed from multiple alert sources support the construction of alert graphs. This approach enables an effective and scalable representation of the attack timelines where individual nodes represent malicious activity detections with connections describing the potential attack paths. This work demonstrates adaptability to different attack patterns through implementing a novel method for parsing and classifying alert graphs while maintaining efficacy despite potentially low-dimension node features.
- Abstract(参考訳): 本研究では,被害者ネットワーク内の攻撃タイムライン表現からランサムウェアを識別する手法を提案する。
複数のアラートソースから開発された悪意あるアクティビティプロファイルは、アラートグラフの構築をサポートする。
このアプローチにより、個々のノードが悪意のあるアクティビティ検出を、潜在的な攻撃経路を記述するコネクションで表現する、攻撃タイムラインの効果的でスケーラブルな表現が可能になる。
この研究は、潜在的に低次元のノード機能にもかかわらず有効性を保ちながら警告グラフを解析・分類する新しい方法を実装することで、異なる攻撃パターンへの適応性を実証する。
関連論文リスト
- Twin Trigger Generative Networks for Backdoor Attacks against Object Detection [14.578800906364414]
オブジェクト検出器は、現実世界のアプリケーションで広く使われているが、バックドア攻撃に弱い。
バックドア攻撃に関するほとんどの研究は画像分類に焦点を合わせており、物体検出について限定的な研究がなされている。
本研究では,トレーニング中のモデルにバックドアを埋め込むための目に見えないトリガと,推論中の安定したアクティベーションのための目に見えるトリガを生成する新しいツイントリガ生成ネットワークを提案する。
論文 参考訳(メタデータ) (2024-11-23T03:46:45Z) - Time-Aware Face Anti-Spoofing with Rotation Invariant Local Binary Patterns and Deep Learning [50.79277723970418]
模倣攻撃は 不正な識別と その後の攻撃者の認証につながる
顔認識と同様に、模倣攻撃も機械学習で検出できる。
本稿では,未使用の機能と時間認識の深層学習戦略を組み合わせることで,高い分類精度を実現する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-27T07:26:10Z) - Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
本稿では, 対向性, 可視性に優れた対向性例を生成できるASMA(Adversarial Semantic Mask Attack framework)を提案する。
具体的には, 局所的なセマンティック領域の摂動を抑制し, 良好なステルス性を実現する, 対向型セマンティックマスク生成モデルを提案する。
論文 参考訳(メタデータ) (2024-06-16T10:38:11Z) - Multi-granular Adversarial Attacks against Black-box Neural Ranking Models [111.58315434849047]
多粒性摂動を取り入れた高品質な逆数例を作成する。
我々は,多粒体攻撃を逐次的意思決定プロセスに変換する。
本手法は,攻撃の有効性と非受容性の両方において,一般的なベースラインを超えている。
論文 参考訳(メタデータ) (2024-04-02T02:08:29Z) - Streamlining Attack Tree Generation: A Fragment-Based Approach [39.157069600312774]
本稿では,公開情報セキュリティデータベースの情報を活用した,フラグメントベースのアタックグラフ生成手法を提案する。
また,攻撃グラフ生成手法として,攻撃モデリングのためのドメイン固有言語を提案する。
論文 参考訳(メタデータ) (2023-10-01T12:41:38Z) - Poisoning Network Flow Classifiers [10.055241826257083]
本稿では,ネットワークトラフィックフロー分類器に対する毒性攻撃,特にバックドア攻撃に焦点を当てた。
学習データのみを改ざんすることを相手の能力に制約するクリーンラベル中毒の難易度シナリオについて検討した。
本稿では, モデル解釈可能性を利用したトリガー製作戦略について述べる。
論文 参考訳(メタデータ) (2023-06-02T16:24:15Z) - SPGNN-API: A Transferable Graph Neural Network for Attack Paths
Identification and Autonomous Mitigation [1.8322859214908722]
攻撃経路のタイムリーな識別は、脅威の積極的な緩和を可能にする。
本研究は、最短経路同定のための新しい転送可能なグラフニューラルネットワークモデルを提案する。
本フレームワークでは,ネットワークファイアウォールルールのプロアクティブチューニングを通じて,自動脅威軽減を実現する。
論文 参考訳(メタデータ) (2023-05-31T01:48:12Z) - Novelty Detection in Network Traffic: Using Survival Analysis for
Feature Identification [1.933681537640272]
侵入検知システムは、多くの組織のサイバー防衛とレジリエンス戦略の重要な構成要素である。
これらのシステムの欠点の1つは、悪意のあるネットワークイベントを検出するために既知の攻撃シグネチャに依存することである。
本稿では,生存分析技術に基づく新規性検出に影響を及ぼすネットワークトラフィックの特徴を識別するための,従来からあるアプローチを提案する。
論文 参考訳(メタデータ) (2023-01-16T01:40:29Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
Emphbackdoor攻撃は、深層ニューラルネットワーク(DNN)に隠れたバックドアを埋め込み、トレーニングデータに毒を盛ることを目的としている。
我々は,対象ラベルを画像レベルではなくオブジェクトレベルから扱う,新たな攻撃パラダイムであるemphfine-fine-grained attackを提案する。
実験により、提案手法はわずかなトレーニングデータだけを毒殺することでセマンティックセグメンテーションモデルを攻撃することに成功した。
論文 参考訳(メタデータ) (2021-03-06T05:50:29Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
本稿では,最近導入された非破壊的特徴を動機とした新しい確率的対向検出器を提案する。
本稿では,非ロバスト特徴を逆例の共通性と考え,その性質に対応する表現空間におけるクラスターの探索が可能であることを推定する。
このアイデアは、別のクラスタ内の逆表現の確率推定分布を導出し、その分布を確率に基づく逆検出器として活用する。
論文 参考訳(メタデータ) (2020-12-07T07:21:18Z) - Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition [56.844587127848854]
このような攻撃に対して,最先端の歩行認識モデルが脆弱であることを示す。
生成した対向ネットワークに基づくアーキテクチャを用いて、対向的な高品質な歩行シルエットやビデオフレームを意味的に生成する。
実験結果から, フレームの1分の1しか攻撃されない場合, 対象モデルの精度は劇的に低下することがわかった。
論文 参考訳(メタデータ) (2020-02-22T10:08:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。