論文の概要: Twin Trigger Generative Networks for Backdoor Attacks against Object Detection
- arxiv url: http://arxiv.org/abs/2411.15439v1
- Date: Sat, 23 Nov 2024 03:46:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:21:16.759777
- Title: Twin Trigger Generative Networks for Backdoor Attacks against Object Detection
- Title(参考訳): オブジェクト検出に対するバックドアアタックのためのツイントリガー生成ネットワーク
- Authors: Zhiying Li, Zhi Liu, Guanggang Geng, Shreyank N Gowda, Shuyuan Lin, Jian Weng, Xiaobo Jin,
- Abstract要約: オブジェクト検出器は、現実世界のアプリケーションで広く使われているが、バックドア攻撃に弱い。
バックドア攻撃に関するほとんどの研究は画像分類に焦点を合わせており、物体検出について限定的な研究がなされている。
本研究では,トレーニング中のモデルにバックドアを埋め込むための目に見えないトリガと,推論中の安定したアクティベーションのための目に見えるトリガを生成する新しいツイントリガ生成ネットワークを提案する。
- 参考スコア(独自算出の注目度): 14.578800906364414
- License:
- Abstract: Object detectors, which are widely used in real-world applications, are vulnerable to backdoor attacks. This vulnerability arises because many users rely on datasets or pre-trained models provided by third parties due to constraints on data and resources. However, most research on backdoor attacks has focused on image classification, with limited investigation into object detection. Furthermore, the triggers for most existing backdoor attacks on object detection are manually generated, requiring prior knowledge and consistent patterns between the training and inference stages. This approach makes the attacks either easy to detect or difficult to adapt to various scenarios. To address these limitations, we propose novel twin trigger generative networks in the frequency domain to generate invisible triggers for implanting stealthy backdoors into models during training, and visible triggers for steady activation during inference, making the attack process difficult to trace. Specifically, for the invisible trigger generative network, we deploy a Gaussian smoothing layer and a high-frequency artifact classifier to enhance the stealthiness of backdoor implantation in object detectors. For the visible trigger generative network, we design a novel alignment loss to optimize the visible triggers so that they differ from the original patterns but still align with the malicious activation behavior of the invisible triggers. Extensive experimental results and analyses prove the possibility of using different triggers in the training stage and the inference stage, and demonstrate the attack effectiveness of our proposed visible trigger and invisible trigger generative networks, significantly reducing the mAP_0.5 of the object detectors by 70.0% and 84.5%, including YOLOv5 and YOLOv7 with different settings, respectively.
- Abstract(参考訳): オブジェクト検出器は、現実世界のアプリケーションで広く使われているが、バックドア攻撃に弱い。
この脆弱性は、多くのユーザがデータやリソースの制約により、サードパーティが提供するデータセットや事前トレーニングモデルに依存しているため発生します。
しかし、バックドア攻撃に関するほとんどの研究は画像分類に焦点を合わせており、物体検出については限定的な研究がなされている。
さらに、オブジェクト検出に対する既存のバックドア攻撃のトリガーは手動で生成され、トレーニングと推論ステージの間に事前の知識と一貫したパターンが必要とされる。
このアプローチにより、攻撃は検出が容易か、さまざまなシナリオに適応することが困難になる。
これらの制約に対処するために、周波数領域における新たなツイントリガ生成ネットワークを提案し、トレーニング中にステルスシーバックドアをモデルに移植するための見えないトリガと、推論中に安定したアクティベーションのための可視トリガを生成し、攻撃過程の追跡を困難にする。
具体的には, 目に見えないトリガ生成ネットワークにおいて, 物体検出装置におけるバックドア注入のステルス性を高めるため, ガウス平滑化層と高周波アーティファクト分類器を配置する。
可視的トリガ生成ネットワークでは、可視的トリガを最適化するために新しいアライメント損失を設計し、それらが元のパターンと異なるが、可視的トリガの悪質なアクティベーション動作と整合する。
実験結果と分析結果から, トレーニング段階と推論段階において異なるトリガを使用する可能性を示し, 提案した可視トリガと不可視トリガ生成ネットワークの攻撃効果を示し, YOLOv5, YOLOv7を含む対象検出器のmAP_0.5を, それぞれ70.0%, 84.5%削減した。
関連論文リスト
- AnywhereDoor: Multi-Target Backdoor Attacks on Object Detection [9.539021752700823]
AnywhereDoorは、オブジェクト検出に適した柔軟なバックドア攻撃だ。
攻撃者に対して高い制御能力を提供し、攻撃成功率を80%近く向上させる。
論文 参考訳(メタデータ) (2024-11-21T15:50:59Z) - Long-Tailed Backdoor Attack Using Dynamic Data Augmentation Operations [50.1394620328318]
既存のバックドア攻撃は主にバランスの取れたデータセットに焦点を当てている。
動的データ拡張操作(D$2$AO)という効果的なバックドア攻撃を提案する。
本手法は,クリーンな精度を維持しつつ,最先端の攻撃性能を実現することができる。
論文 参考訳(メタデータ) (2024-10-16T18:44:22Z) - Detector Collapse: Physical-World Backdooring Object Detection to Catastrophic Overload or Blindness in Autonomous Driving [17.637155085620634]
ディテクター・コラプス(英: Detector Collapse、DC)は、オブジェクト検出用に設計された、新しいバックドア攻撃パラダイムである。
DCは、検出器を瞬時に無力化するように設計されている(つまり、検出器の性能が著しく損なわれ、サービス停止で終了する)。
我々は,自然物を利用した新たな中毒対策を導入し,実環境における実践的なバックドアとして機能することを可能にした。
論文 参考訳(メタデータ) (2024-04-17T13:12:14Z) - LOTUS: Evasive and Resilient Backdoor Attacks through Sub-Partitioning [49.174341192722615]
バックドア攻撃は、ディープラーニングアプリケーションに重大なセキュリティ脅威をもたらす。
近年の研究では、特殊な変換機能によって作られたサンプル特異的に見えないトリガーを用いた攻撃が導入されている。
我々は、回避性とレジリエンスの両方に対処するために、新しいバックドアアタックLOTUSを導入する。
論文 参考訳(メタデータ) (2024-03-25T21:01:29Z) - Backdoor Attack against One-Class Sequential Anomaly Detection Models [10.020488631167204]
そこで我々は,新たなバックドア攻撃戦略を提案することによって,深部連続異常検出モデルを提案する。
攻撃アプローチは2つの主要なステップ、トリガー生成とバックドアインジェクションから構成される。
2つの確立された1クラスの異常検出モデルにバックドアを注入することにより,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-02-15T19:19:54Z) - Pre-trained Trojan Attacks for Visual Recognition [106.13792185398863]
PVM(Pre-trained Vision Model)は、下流タスクを微調整する際、例外的なパフォーマンスのため、主要なコンポーネントとなっている。
本稿では,PVMにバックドアを埋め込んだトロイの木馬攻撃を提案する。
バックドア攻撃の成功において、クロスタスクアクティベーションとショートカット接続がもたらす課題を強調します。
論文 参考訳(メタデータ) (2023-12-23T05:51:40Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
本報告では,防衛後においてもバックドア攻撃が有効であり続けるという現実的なシナリオにおける脅威を明らかにする。
バックドア検出や細調整防御のモデル化に抵抗性のあるemphtoolnsアタックを導入する。
論文 参考訳(メタデータ) (2023-11-20T02:21:49Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
我々は,タスク特性に基づいて,無目標で毒のみのバックドア攻撃を設計する。
攻撃によって、バックドアがターゲットモデルに埋め込まれると、トリガーパターンでスタンプされたオブジェクトの検出を失う可能性があることを示す。
論文 参考訳(メタデータ) (2022-11-02T17:05:45Z) - BadDet: Backdoor Attacks on Object Detection [42.40418007499009]
対象物検出のための4種類のバックドア攻撃を提案する。
トリガーは、ターゲットクラスのオブジェクトを誤って生成することができる。
単一のトリガーは、イメージ内のすべてのオブジェクトの予測をターゲットクラスに変更することができる。
論文 参考訳(メタデータ) (2022-05-28T18:02:11Z) - Detecting Backdoors in Neural Networks Using Novel Feature-Based Anomaly
Detection [16.010654200489913]
本稿では,ニューラルネットワークのバックドア攻撃に対する新たな防御法を提案する。
バックドアネットワークの機能抽出層が新機能を組み込んでトリガーの存在を検出するという直感に基づいている。
バックドアの検出には、クリーンな検証データに基づいて訓練された2つの相乗的異常検出器を使用する。
論文 参考訳(メタデータ) (2020-11-04T20:33:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。