Numerical variational simulations of quantum phase transitions in the
sub-Ohmic spin-boson model with multiple polaron ansatz
- URL: http://arxiv.org/abs/2309.00797v1
- Date: Sat, 2 Sep 2023 02:23:54 GMT
- Title: Numerical variational simulations of quantum phase transitions in the
sub-Ohmic spin-boson model with multiple polaron ansatz
- Authors: Yulong Shen and Nengji Zhou
- Abstract summary: Dissipative quantum phase transitions in the sub-Ohmic spin-boson model are numerically studied.
quantum-to-classical correspondence is fully confirmed over the entire sub-Ohmic range.
Mean-field and non-mean-field critical behaviors are found in the deep and shallow sub-Ohmic regimes.
- Score: 17.26854451734512
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With extensive variational simulations, dissipative quantum phase transitions
in the sub-Ohmic spin-boson model are numerically studied in a dense limit of
environmental modes. By employing a generalized trial wave function composed of
coherent-state expansions, transition points and critical exponents are
accurately determined for various spectral exponents, demonstrating excellent
agreement with those obtained by other sophisticated numerical techniques.
Besides, the quantum-to-classical correspondence is fully confirmed over the
entire sub-Ohmic range, compared with theoretical predictions of the long-range
Ising model. Mean-field and non-mean-field critical behaviors are found in the
deep and shallow sub-Ohmic regimes, respectively, and distinct physical
mechanisms of them are uncovered.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Spin fluctuations in the dissipative phase transitions of the quantum
Rabi model [0.998109397893173]
We investigate the dissipative phase transitions of the anisotropic quantum Rabi model with cavity decay.
Our findings indicate a general tendency of forming extreme non-equilibrium states in the single-spin system.
arXiv Detail & Related papers (2023-12-11T13:35:05Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Unveiling quantum entanglement and correlation of sub-Ohmic and Ohmic
baths for quantum phase transitions in dissipative systems [6.564294282164792]
We numerically investigate quantum entanglement and correlation of sub-Ohmic and Ohmic baths for dissipative quantum phase transitions.
With several measures borrowed from quantum information theory, three different types of singularities are found for the first-order, second-order, and Kosterlitz-Thouless phase transitions.
The scaling form of the quantum discord in the Ohmic case is identified, quite different from that in the sub-Ohmic regime.
arXiv Detail & Related papers (2022-02-06T02:01:26Z) - Dynamical quantum phase transitions in the one-dimensional extended
Fermi-Hubbard model [0.0]
We study the emergence of dynamical quantum phase transitions (DQPTs) in a half-filled one-dimensional lattice.
We identify several types of sudden interaction quenches which lead to DQPTs.
State-of-the-art cold-atom quantum simulators constitute ideal platforms to implement several reported DQPTs experimentally.
arXiv Detail & Related papers (2021-09-16T04:12:50Z) - Quantum criticality of the Ohmic spin-boson model in a high dense
spectrum: symmetries,quantum fluctuations and correlations [0.966840768820136]
Study of dissipative quantum phase transitions in the Ohmic spin-boson model is numerically challenging in a dense limit of environmental modes.
Large-scale numerical simulations are carried out based on the variational principle.
arXiv Detail & Related papers (2021-06-14T23:55:39Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Classical, semiclassical and quantum signatures of quantum phase
transitions in a (pseudo) relativistic many-body system [0.0]
We identify a (pseudo) relativistic spin-dependent analogue of the celebrated quantum phase transition driven by the formation of a bright soliton in bosonic gases.
We numerically investigate the approach from its finite-size precursors to the sharp quantum phase transition in the thermodynamic limit.
arXiv Detail & Related papers (2020-07-09T09:08:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.