Unveiling quantum entanglement and correlation of sub-Ohmic and Ohmic
baths for quantum phase transitions in dissipative systems
- URL: http://arxiv.org/abs/2202.02680v1
- Date: Sun, 6 Feb 2022 02:01:26 GMT
- Title: Unveiling quantum entanglement and correlation of sub-Ohmic and Ohmic
baths for quantum phase transitions in dissipative systems
- Authors: Xiaohui Qian, Zhe Sun, and Nengji Zhou
- Abstract summary: We numerically investigate quantum entanglement and correlation of sub-Ohmic and Ohmic baths for dissipative quantum phase transitions.
With several measures borrowed from quantum information theory, three different types of singularities are found for the first-order, second-order, and Kosterlitz-Thouless phase transitions.
The scaling form of the quantum discord in the Ohmic case is identified, quite different from that in the sub-Ohmic regime.
- Score: 6.564294282164792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By employing the spin-boson model in a dense limit of environmental modes,
quantum entanglement and correlation of sub-Ohmic and Ohmic baths for
dissipative quantum phase transitions are numerically investigated based on the
variational principle. With several measures borrowed from quantum information
theory, three different types of singularities are found for the first-order,
second-order, and Kosterlitz-Thouless phase transitions, respectively, and the
values of transition points and critical exponents are accurately determined.
Besides, the scaling form of the quantum discord in the Ohmic case is
identified, quite different from that in the sub-Ohmic regime. In a two-spin
model, two distinct behaviors of the quantum discord are uncovered: one is
related to the quantum entanglement between two spins and the other is decided
by the correlation function in the position space rather than the entanglement.
Related papers
- Numerical variational simulations of quantum phase transitions in the
sub-Ohmic spin-boson model with multiple polaron ansatz [17.26854451734512]
Dissipative quantum phase transitions in the sub-Ohmic spin-boson model are numerically studied.
quantum-to-classical correspondence is fully confirmed over the entire sub-Ohmic range.
Mean-field and non-mean-field critical behaviors are found in the deep and shallow sub-Ohmic regimes.
arXiv Detail & Related papers (2023-09-02T02:23:54Z) - Entanglement and quantum discord in the cavity QED models [0.0]
We investigate the quantum correlation between light and matter in bipartite quantum systems.
To gauge the degree of quantum entanglement, some entanglement measurements are introduced.
consideration is given to the impacts of initial entanglement and dissipation strength on quantum discord.
arXiv Detail & Related papers (2023-07-14T14:01:00Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Shared purity and concurrence of a mixture of ground and low-lying
excited states as indicators of quantum phase transitions [0.0]
We show that shared purity is as effective as concurrence in indicating quantum phase transitions.
We find diverging exponents for the order parameters near the transitions in odd- and even-sized systems.
It is plausible that the divergence is related to a M"obius strip-like boundary condition required for odd-sized systems.
arXiv Detail & Related papers (2022-02-07T16:38:07Z) - Quantum phase transition in the one-dimensional Dicke-Hubbard model with
coupled qubits [20.002319486166016]
We study the ground state phase diagram of a one-dimensional two qubits Dicke-Hubbard model with XY qubit-qubit interaction.
arXiv Detail & Related papers (2021-11-05T13:17:49Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Dissipative Floquet Dynamics: from Steady State to Measurement Induced
Criticality in Trapped-ion Chains [0.0]
Quantum systems evolving unitarily and subject to quantum measurements exhibit various types of non-equilibrium phase transitions.
Dissipative phase transitions in steady states of time-independent Liouvillians and measurement induced phase transitions are two primary examples.
We show that a dissipative phase transition between a ferromagnetic ordered phase and a paramagnetic disordered phase emerges for long-range systems.
arXiv Detail & Related papers (2021-07-12T18:18:54Z) - Quantum criticality of the Ohmic spin-boson model in a high dense
spectrum: symmetries,quantum fluctuations and correlations [0.966840768820136]
Study of dissipative quantum phase transitions in the Ohmic spin-boson model is numerically challenging in a dense limit of environmental modes.
Large-scale numerical simulations are carried out based on the variational principle.
arXiv Detail & Related papers (2021-06-14T23:55:39Z) - Quantum coherence and spin nematic to nematic quantum phase transitions
in biquadratic spin-1 and -2 XY chains with rhombic single-ion anisotropy [3.75973577015643]
We investigate quantum phase transitions and quantum coherence in infinite biquadratic spin-1 and -2 XY chains with rhombic single-ion anisotropy.
arXiv Detail & Related papers (2020-10-05T06:55:36Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.