論文の概要: Trustworthiness-Driven Graph Convolutional Networks for Signed Network
Embedding
- arxiv url: http://arxiv.org/abs/2309.00816v1
- Date: Sat, 2 Sep 2023 03:59:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 00:54:18.602884
- Title: Trustworthiness-Driven Graph Convolutional Networks for Signed Network
Embedding
- Title(参考訳): 署名ネットワーク埋め込みのための信頼性駆動型グラフ畳み込みネットワーク
- Authors: Min-Jeong Kim, Yeon-Chang Lee, David Y. Kang, Sang-Wook Kim
- Abstract要約: 本稿では,新しいグラフ畳み込みネットワーク (GCN) を用いた符号付きネットワーク埋め込み (SNE) 手法を提案する。
TrustSGCNは、高次関係のためのエッジサインの信頼性を利用して、GCNに不正な埋め込み伝搬を補正する。
4つの実世界で署名されたネットワークデータセットの実験では、TrustSGCNが5つの最先端GCNベースのSNEメソッドを一貫して上回っていることが示されている。
- 参考スコア(独自算出の注目度): 24.73950153183577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of representing nodes in a signed network as low-dimensional
vectors, known as signed network embedding (SNE), has garnered considerable
attention in recent years. While several SNE methods based on graph
convolutional networks (GCN) have been proposed for this problem, we point out
that they significantly rely on the assumption that the decades-old balance
theory always holds in the real-world. To address this limitation, we propose a
novel GCN-based SNE approach, named as TrustSGCN, which corrects for incorrect
embedding propagation in GCN by utilizing the trustworthiness on edge signs for
high-order relationships inferred by the balance theory. The proposed approach
consists of three modules: (M1) generation of each node's extended ego-network;
(M2) measurement of trustworthiness on edge signs; and (M3)
trustworthiness-aware propagation of embeddings. Furthermore, TrustSGCN learns
the node embeddings by leveraging two well-known societal theories, i.e.,
balance and status. The experiments on four real-world signed network datasets
demonstrate that TrustSGCN consistently outperforms five state-of-the-art
GCN-based SNE methods. The code is available at
https://github.com/kmj0792/TrustSGCN.
- Abstract(参考訳): 署名ネットワーク内のノードを低次元ベクトルとして表現する問題は、署名ネットワーク埋め込み (SNE) として近年注目されている。
グラフ畳み込みネットワーク(GCN)に基づくいくつかのSNE法が提案されているが、数十年前のバランス理論が常に実世界で成り立つという仮定に大きく依存していることが指摘されている。
この制限に対処するために、バランス理論によって推定される高次関係に対するエッジサインの信頼性を利用して、GCNに不正な埋め込み伝播を補正するTrustSGCNと呼ばれる新しいGCNベースのSNEアプローチを提案する。
提案手法は, 各ノードの拡張エゴネットワークの生成, (M2) エッジサインの信頼性の測定, (M3) 埋め込みの信頼性に配慮した伝播の3つのモジュールからなる。
さらに、TrustSGCNは、よく知られた2つの社会的理論、すなわちバランスとステータスを活用してノード埋め込みを学ぶ。
4つの実世界で署名されたネットワークデータセットの実験は、TrustSGCNが5つの最先端GCNベースのSNEメソッドを一貫して上回ることを示した。
コードはhttps://github.com/kmj0792/TrustSGCNで入手できる。
関連論文リスト
- KGTrust: Evaluating Trustworthiness of SIoT via Knowledge Enhanced Graph
Neural Networks [63.531790269009704]
ソーシャル・インターネット・オブ・モノ(Social Internet of Things, SIoT)は、スマート・オブジェクト(物)にソーシャルネットワークの概念を注入する、有望で新興のパラダイムである。
リスクと不確実性のため、解決すべき重要かつ緊急の問題は、SIoT内で信頼性の高い関係、すなわち信頼評価を確立することである。
本稿では,SIoTにおける信頼度向上のための知識強化グラフニューラルネットワーク(KGTrust)を提案する。
論文 参考訳(メタデータ) (2023-02-22T14:24:45Z) - TrustGNN: Graph Neural Network based Trust Evaluation via Learnable
Propagative and Composable Nature [63.78619502896071]
信頼評価は、サイバーセキュリティ、ソーシャルコミュニケーション、レコメンダシステムなど、多くのアプリケーションにとって重要である。
本稿では,信頼グラフの伝播性および構成性を考慮した新しい信頼評価手法TrustGNNを提案する。
具体的には、TrustGNNは、異なる伝播過程のための特定の伝播パターンを設計し、新しい信頼を生み出すための異なる伝播過程の貢献を区別する。
論文 参考訳(メタデータ) (2022-05-25T13:57:03Z) - Learning Asymmetric Embedding for Attributed Networks via Convolutional
Neural Network [19.611523749659355]
AAGCNと呼ばれる畳み込みグラフニューラルネットワークに基づく新しい非対称属性ネットワーク埋め込みモデルを提案する。
主な考え方は、有向属性ネットワークの非対称な近接性と非対称な類似性を極大に保存することである。
ネットワーク再構成,リンク予測,ノード分類,可視化タスクのための実世界の3つのネットワーク上でのAAGCNの性能を検証した。
論文 参考訳(メタデータ) (2022-02-13T13:35:15Z) - MUSE: Multi-faceted Attention for Signed Network Embedding [4.442695760653947]
符号付きネットワーク埋め込みは、正と負のリンクを持つ符号付きネットワークにおけるノードの低次元表現を学習するアプローチである。
この問題を解決するために,MUlti-faceted attention-based Signed network Embedding フレームワーク MUSE を提案する。
論文 参考訳(メタデータ) (2021-04-29T16:09:35Z) - SDGNN: Learning Node Representation for Signed Directed Networks [43.15277366961127]
グラフニューラルネットワーク(gnns)は広く注目を集め、ノード表現の学習において最先端のパフォーマンスをもたらす。
これらのモデルを署名された有向ネットワークに転送するのは簡単なことではないが、実世界では広く観察されているが、あまり研究されていない。
我々は,符号付き有向ネットワークのノード埋め込みを学習するために,SDGNNと呼ばれる新しい符号付き有向グラフニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2021-01-07T06:15:07Z) - Interpretable Signed Link Prediction with Signed Infomax Hyperbolic
Graph [54.03786611989613]
ソーシャルネットワークにおけるサイン付きリンク予測は、ユーザ(すなわちノード)間の基盤となる関係(リンク)を明らかにすることを目的としている
我々は Signed Infomax Hyperbolic Graph (textbfSIHG) と呼ばれる統一されたフレームワークを開発する。
高次ユーザ関係と複雑な階層をモデル化するために、ノードの埋め込みを投影し、より低歪みの双曲空間で測定する。
論文 参考訳(メタデータ) (2020-11-25T05:09:03Z) - On the Equivalence of Decoupled Graph Convolution Network and Label
Propagation [60.34028546202372]
いくつかの研究は、カップリングがデカップリングよりも劣っていることを示している。
有効性にもかかわらず、疎結合GCNの作用機構はよく理解されていない。
本稿では,分離GCNの欠陥を克服する適応的学習法(PTA)を提案する。
論文 参考訳(メタデータ) (2020-10-23T13:57:39Z) - Decoupled Variational Embedding for Signed Directed Networks [39.3449157396596]
我々は,符号付き有向ネットワークにおける一階・高階トポロジを同時にキャプチャすることで,より代表的なノード埋め込みを学習することを提案する。
特に、可変自動符号化の観点から、符号付き有向ネットワーク上での表現学習問題を再構成する。
広範に使われている3つの実世界のデータセットに対して大規模な実験を行う。
論文 参考訳(メタデータ) (2020-08-28T02:48:15Z) - Investigating and Mitigating Degree-Related Biases in Graph
Convolutional Networks [62.8504260693664]
グラフ畳み込みネットワーク(GCN)は、グラフ上の半教師付き学習タスクに対して有望な結果を示す。
本稿では,ノード次数分布に関するGCNを解析する。
本稿では,GCNの次数バイアスを緩和する自己監督型DegreeSpecific GCN(SL-DSGC)を開発した。
論文 参考訳(メタデータ) (2020-06-28T16:26:47Z) - CSNE: Conditional Signed Network Embedding [77.54225346953069]
署名されたネットワークは、友人/フォアや信頼/不信のようなエンティティ間の正と負の関係を符号化する。
サイン予測のための既存の埋め込み手法は、一般に最適化関数におけるステータスやバランス理論の異なる概念を強制する。
条件付き符号付きネットワーク埋め込み(CSNE)を導入する。
我々の確率論的アプローチは、きめ細かな詳細とは別途、ネットワーク内の記号に関する構造情報をモデル化する。
論文 参考訳(メタデータ) (2020-05-19T19:14:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。