論文の概要: KAN KAN Buff Signed Graph Neural Networks?
- arxiv url: http://arxiv.org/abs/2501.00709v3
- Date: Wed, 22 Jan 2025 07:55:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:29:08.637187
- Title: KAN KAN Buff Signed Graph Neural Networks?
- Title(参考訳): KAKA Buff Signed Graph Neural Networks?
- Authors: Muhieddine Shebaro, Jelena Tešić,
- Abstract要約: 我々は、Kolmogorov-Arnold Neural Network(KAN)をSGCN(Signed Graph Convolutional Networks)に統合することを提案する。
我々は、サイン付きコミュニティ検出やリンクサイン予測などのタスクにおいて、CASGCNを評価し、署名付きネットワークにおける埋め込み品質を改善する。
これらの結果から, KASGCNsは文脈依存の有効性でグラフ解析を拡張できる可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Graph Representation Learning aims to create effective embeddings for nodes and edges that encapsulate their features and relationships. Graph Neural Networks (GNNs) leverage neural networks to model complex graph structures. Recently, the Kolmogorov-Arnold Neural Network (KAN) has emerged as a promising alternative to the traditional Multilayer Perceptron (MLP), offering improved accuracy and interpretability with fewer parameters. In this paper, we propose the integration of KANs into Signed Graph Convolutional Networks (SGCNs), leading to the development of KAN-enhanced SGCNs (KASGCN). We evaluate KASGCN on tasks such as signed community detection and link sign prediction to improve embedding quality in signed networks. Our experimental results indicate that KASGCN exhibits competitive or comparable performance to standard SGCNs across the tasks evaluated, with performance variability depending on the specific characteristics of the signed graph and the choice of parameter settings. These findings suggest that KASGCNs hold promise for enhancing signed graph analysis with context-dependent effectiveness.
- Abstract(参考訳): Graph Representation Learningは、機能と関係をカプセル化したノードとエッジに効果的な埋め込みを作成することを目的としている。
グラフニューラルネットワーク(GNN)は、ニューラルネットワークを利用して複雑なグラフ構造をモデル化する。
近年、KAN(Kolmogorov-Arnold Neural Network)が従来のMLP(Multilayer Perceptron)の代替として登場し、より少ないパラメータで精度と解釈性が向上した。
本稿では、KASGCN(Kan-enhanced SGCN)の開発に繋がる、SGCN(Signed Graph Convolutional Networks)へのkansの統合を提案する。
我々は、サイン付きコミュニティ検出やリンクサイン予測などのタスクにおいて、CASGCNを評価し、署名付きネットワークにおける埋め込み品質を改善する。
実験結果から,KASGCN は標準 SGCN に匹敵する性能を示すことが明らかとなった。
これらの結果から, KASGCNsは文脈依存の有効性でグラフ解析を拡張できる可能性が示唆された。
関連論文リスト
- Signed Graph Autoencoder for Explainable and Polarization-Aware Network Embeddings [20.77134976354226]
署名付きネットワーク用に設計されたSGAAE(Signed Graph Archetypal Autoencoder)フレームワーク。
SGAAEは、異なる極端プロファイル上でノードメンバシップを表現するノードレベル表現を抽出する。
モデルは、実世界の4つのデータセット間で署名付きリンク予測の異なるタスクで高いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-09-16T16:40:40Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
グラフニューラルネットワーク(GNN)は、マルチモーダルグラフとマルチリレーショナルグラフを処理する能力によって、医療やその他の領域で人気を集めている。
GNNにおける埋め込み情報のフローが知識グラフ(KG)におけるリンクの予測に与える影響について検討する。
以上の結果から,ドメイン知識をGNN接続に組み込むことで,KGと同じ接続を使用する場合や,制約のない埋め込み伝搬を行う場合よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-09-12T09:18:12Z) - Neighborhood Convolutional Network: A New Paradigm of Graph Neural
Networks for Node Classification [12.062421384484812]
グラフ畳み込みネットワーク(GCN)は、各畳み込み層における近傍の集約と特徴変換を分離する。
本稿では,周辺畳み込みネットワーク(NCN)と呼ばれるGCNの新しいパラダイムを提案する。
このようにして、モデルは、近隣情報を集約するための分離GCNの利点を継承すると同時に、より強力な特徴学習モジュールを開発することができる。
論文 参考訳(メタデータ) (2022-11-15T02:02:51Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Graph Partner Neural Networks for Semi-Supervised Learning on Graphs [16.489177915147785]
グラフ畳み込みネットワーク(GCN)は、グラフ構造化データを処理するのに強力であり、ノード分類、リンク予測、グラフ分類などのタスクで最先端のパフォーマンスを達成した。
グラフ畳み込み処理を繰り返した後にノードの表現が区別できない傾向にあるため、深いGCNが過度に滑らかな問題に悩まされることは避けられない。
本稿では,非パラメータ化GCNとパラメータ共有スキームを組み合わせたグラフパートナーニューラルネットワーク(GPNN)を提案する。
論文 参考訳(メタデータ) (2021-10-18T10:56:56Z) - wsGAT: Weighted and Signed Graph Attention Networks for Link Prediction [0.0]
グラフニューラルネットワーク(GNN)は、グラフの表現を学習し、現実世界の多くの問題に取り組むために広く利用されている。
我々は,グラフアテンションネットワーク(GAT)層の拡張であるwsGATを提案し,符号付きおよび重み付きリンクでグラフを処理する。
以上の結果から,wsGAT層を用いたモデルはGCNII層やSGCN層よりも優れており,符号付き重みが予測されると性能が低下しないことがわかった。
論文 参考訳(メタデータ) (2021-09-21T12:07:51Z) - Graph Attention Networks with Positional Embeddings [7.552100672006174]
グラフニューラルネットワーク(GNN)は、ノード分類タスクにおける芸術的パフォーマンスの現在の状態を提供するディープラーニング手法である。
本論文では,GATを位置埋め込みで強化するフレームワークであるG Graph Attentional Networks with Positional Embeddings(GAT-POS)を提案する。
GAT-POSは、強いGNNベースラインや、非ホモフィルグラフ上の最近の構造埋め込み強化GNNと比較して著しく改善されている。
論文 参考訳(メタデータ) (2021-05-09T22:13:46Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。