論文の概要: A Multi-scale Learning of Data-driven and Anatomically Constrained Image
Registration for Adult and Fetal Echo Images
- arxiv url: http://arxiv.org/abs/2309.00831v1
- Date: Sat, 2 Sep 2023 05:33:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 00:56:31.125505
- Title: A Multi-scale Learning of Data-driven and Anatomically Constrained Image
Registration for Adult and Fetal Echo Images
- Title(参考訳): 成人および胎児エコー画像におけるデータ駆動および解剖学的制約付き画像登録のマルチスケール学習
- Authors: Md. Kamrul Hasan, Haobo Zhu, Guang Yang, Choon Hwai Yap
- Abstract要約: 経時的エコー画像登録は臨床定量化の基礎である。
胎児と成人の心エコーに対するDLIRの3つの戦略を組み合わせた枠組みを提案する。
成人および胎児のエコーにおいて,これらの戦略は優れた登録結果が得られることを示す。
- 参考スコア(独自算出の注目度): 4.923733944174007
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Temporal echo image registration is a basis for clinical quantifications such
as cardiac motion estimation, myocardial strain assessments, and stroke volume
quantifications. Deep learning image registration (DLIR) is consistently
accurate, requires less computing effort, and has shown encouraging results in
earlier applications. However, we propose that a greater focus on the warped
moving image's anatomic plausibility and image quality can support robust DLIR
performance. Further, past implementations have focused on adult echo, and
there is an absence of DLIR implementations for fetal echo. We propose a
framework combining three strategies for DLIR for both fetal and adult echo:
(1) an anatomic shape-encoded loss to preserve physiological myocardial and
left ventricular anatomical topologies in warped images; (2) a data-driven loss
that is trained adversarially to preserve good image texture features in warped
images; and (3) a multi-scale training scheme of a data-driven and anatomically
constrained algorithm to improve accuracy. Our experiments show that the
shape-encoded loss and the data-driven adversarial loss are strongly correlated
to good anatomical topology and image textures, respectively. They improve
different aspects of registration performance in a non-overlapping way,
justifying their combination. We show that these strategies can provide
excellent registration results in both adult and fetal echo using the publicly
available CAMUS adult echo dataset and our private multi-demographic fetal echo
dataset, despite fundamental distinctions between adult and fetal echo images.
Our approach also outperforms traditional non-DL gold standard registration
approaches, including Optical Flow and Elastix. Registration improvements could
also be translated to more accurate and precise clinical quantification of
cardiac ejection fraction, demonstrating a potential for translation.
- Abstract(参考訳): 経時的エコー画像登録は、心臓運動推定、心筋ひずみ評価、脳卒中容積定量などの臨床的定量化の基礎である。
deep learning image registration (dlir)は一貫して正確であり、計算労力が少なく、初期のアプリケーションでの結果を奨励している。
しかし, 変形移動画像の解剖学的再現性と画質に重点を置くことで, 頑健なdlir性能を実現することができることを提案する。
さらに、過去の実装は成人のエコーに焦点を当てており、胎児のエコーに対するDLIR実装は存在しない。
胎児と成人の心エコーにおけるDLIRの3つの戦略を組み合わせた枠組みを提案する。(1)生理的心筋と左室の解剖学的トポロジーを保存するための解剖学的形状エンコード損失、(2)歪画像の良好な画像テクスチャ特性を逆向きに学習するデータ駆動損失、(3)データ駆動および解剖学的制約のあるアルゴリズムのマルチスケールトレーニングスキームにより精度を向上する。
実験の結果, 形状符号化損失とデータ駆動逆損失はそれぞれ, 良好な解剖学的トポロジーと画像テクスチャに強く関連していることがわかった。
登録パフォーマンスの異なる側面を重複しない方法で改善し、組み合わせを正当化する。
成人と胎児のエコー画像の基本的な相違にもかかわらず,CAMUS 成人のエコーデータセットとプライベートマルチデマトグラフィ胎児のエコーデータセットを用いて,成人と胎児のエコー画像に優れた登録結果が得られることを示す。
また,本手法は光学フローやElastixなど,従来の非DLゴールド登録手法よりも優れている。
登録の改善は、より正確で正確な心臓射出率の臨床的定量化に翻訳され、翻訳の可能性を示している。
関連論文リスト
- EigenHearts: Cardiac Diseases Classification Using EigenFaces Approach [2.2851400085359685]
心疾患の分類におけるEigenFacesアプローチの応用について検討した。
我々は、心エコー図法における固有顔アプローチから着想を得た前処理ステップを実行し、ポッドモードのセットを生成し、それを固有ハートと呼ぶ。
その結果,SVDを前処理に用いた場合,分類精度は約50%向上した。
論文 参考訳(メタデータ) (2024-11-25T09:41:20Z) - Epicardium Prompt-guided Real-time Cardiac Ultrasound Frame-to-volume Registration [50.602074919305636]
本稿では,CU-Reg と呼ばれる,軽量でエンドツーエンドなカード・ツー・エンド・超音波フレーム・ツー・ボリューム・レジストレーション・ネットワークを提案する。
2次元スパースと3次元濃密な特徴の相互作用を増強するために,心内膜急速ガイドによる解剖学的手がかりを用い,その後,強化された特徴のボクセル的局所グロバル集約を行った。
論文 参考訳(メタデータ) (2024-06-20T17:47:30Z) - Automatic Cardiac Pathology Recognition in Echocardiography Images Using Higher Order Dynamic Mode Decomposition and a Vision Transformer for Small Datasets [2.0286377328378737]
心臓病は、人間の機能不全の主な原因だ。WHOによると、心臓病のために毎年約1800万人が死亡している。
本研究では,新しい深層学習フレームワークに基づく自動心臓病理診断システムを提案する。
論文 参考訳(メタデータ) (2024-04-30T14:16:45Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
ニュージーランドの臨床試験において,PCCT画像の半減量と2倍の速度で再現する深層学習に基づくアプローチを提案する。
本稿では,GPUメモリの制限を緩和するパッチベースのボリュームリファインメントネットワーク,合成データを用いたトレーニングネットワーク,およびモデルベースの反復リファインメントを用いて,合成データと実世界のギャップを埋める。
論文 参考訳(メタデータ) (2024-03-19T00:07:48Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - Generation of Artificial CT Images using Patch-based Conditional
Generative Adversarial Networks [0.0]
本稿では,条件付き判別器を用いた生成対向ネットワークを用いた画像生成手法を提案する。
心電図(CT)画像におけるGAN強調医用画像生成の可能性について検討した。
論文 参考訳(メタデータ) (2022-05-19T20:29:25Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Symmetry-Enhanced Attention Network for Acute Ischemic Infarct
Segmentation with Non-Contrast CT Images [50.55978219682419]
急性虚血性梗塞セグメンテーションのための対称性増強型注意ネットワーク(SEAN)を提案する。
提案するネットワークは、入力されたCT画像を、脳組織が左右対称な標準空間に自動的に変換する。
提案したSEANは、ダイス係数と梗塞局所化の両方の観点から、対称性に基づく最先端の手法より優れている。
論文 参考訳(メタデータ) (2021-10-11T07:13:26Z) - A Deep Discontinuity-Preserving Image Registration Network [73.03885837923599]
ほとんどの深層学習に基づく登録法は、所望の変形場が全世界的に滑らかで連続的であると仮定する。
本稿では、より優れた登録性能とリアルな変形場を得るために、弱い教師付き深部不連続保存画像登録ネットワーク(DDIR)を提案する。
本研究では, 心臓磁気共鳴(MR)画像の登録実験において, 登録精度を大幅に向上し, より現実的な変形を予測できることを実証した。
論文 参考訳(メタデータ) (2021-07-09T13:35:59Z) - Uncertainty Estimation in Deep 2D Echocardiography Segmentation [0.2062593640149623]
トレーニングデータからさらに離れた分布から来るデータをテストする場合、不確実性推定は重要である。
品質の悪い画像を自動的に拒否し、最先端のセグメンテーション結果を改善するために、不確実性推定がどのように用いられるかを示す。
論文 参考訳(メタデータ) (2020-05-19T10:19:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。