論文の概要: A Deep Learning Based Method for Fast Registration of Cardiac Magnetic Resonance Images
- arxiv url: http://arxiv.org/abs/2506.19167v1
- Date: Mon, 23 Jun 2025 22:06:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-25 19:48:23.407647
- Title: A Deep Learning Based Method for Fast Registration of Cardiac Magnetic Resonance Images
- Title(参考訳): 深層学習に基づく心臓磁気共鳴画像の高速登録法
- Authors: Benjamin Graham,
- Abstract要約: 本論文では、心臓のひずみを定量化するために、高速で容積的な登録モデルを提案する。
提案するディープラーニングニューラルネットワーク(DLNN)は,畳み込みを極めて効率的に計算できるアーキテクチャを利用するように設計されている。
- 参考スコア(独自算出の注目度): 8.41988616568344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image registration is used in many medical image analysis applications, such as tracking the motion of tissue in cardiac images, where cardiac kinematics can be an indicator of tissue health. Registration is a challenging problem for deep learning algorithms because ground truth transformations are not feasible to create, and because there are potentially multiple transformations that can produce images that appear correlated with the goal. Unsupervised methods have been proposed to learn to predict effective transformations, but these methods take significantly longer to predict than established baseline methods. For a deep learning method to see adoption in wider research and clinical settings, it should be designed to run in a reasonable time on common, mid-level hardware. Fast methods have been proposed for the task of image registration but often use patch-based methods which can affect registration accuracy for a highly dynamic organ such as the heart. In this thesis, a fast, volumetric registration model is proposed for the use of quantifying cardiac strain. The proposed Deep Learning Neural Network (DLNN) is designed to utilize an architecture that can compute convolutions incredibly efficiently, allowing the model to achieve registration fidelity similar to other state-of-the-art models while taking a fraction of the time to perform inference. The proposed fast and lightweight registration (FLIR) model is used to predict tissue motion which is then used to quantify the non-uniform strain experienced by the tissue. For acquisitions taken from the same patient at approximately the same time, it would be expected that strain values measured between the acquisitions would have very small differences. Using this metric, strain values computed using the FLIR method are shown to be very consistent.
- Abstract(参考訳): 画像登録は、心臓のキネマティクスが組織の健康の指標となる心臓画像における組織の運動を追跡するなど、多くの医学的画像解析アプリケーションで使用されている。
基底真理変換は生成不可能であり、目標と相関する画像を生成する可能性のある複数の変換が存在するため、ディープラーニングアルゴリズムの登録は難しい問題である。
効果的な変換を予測するための教師なし手法が提案されているが、これらの手法は確立されたベースライン法よりも予測にかなり時間がかかる。
より広い研究や臨床環境での深層学習手法では、一般的な中級ハードウェア上で適切なタイミングで実行できるように設計する必要がある。
画像登録のタスクには高速な方法が提案されているが、心臓などの非常にダイナミックな臓器の登録精度に影響を与えるパッチベースの手法がよく用いられる。
本論文では、心臓のひずみを定量化するために、高速で容積的な登録モデルを提案する。
提案するDeep Learning Neural Network(DLNN)は,畳み込みを極めて効率的に計算できるアーキテクチャを活用するように設計されている。
提案した高速軽量レジストレーション(FLIR)モデルを用いて組織の動きを予測する。
ほぼ同時期に同一患者から採取した検体では, 検体間のひずみ値の差が非常に小さいことが予想された。
この測定値を用いて、FLIR法を用いて計算したひずみ値は、非常に一貫した値であることが示されている。
関連論文リスト
- Multi-scale, Data-driven and Anatomically Constrained Deep Learning
Image Registration for Adult and Fetal Echocardiography [4.923733944174007]
胎児と成人のエコーにおける深層学習画像登録のための3つの戦略を組み合わせた枠組みを提案する。
以上の結果から, 良好な解剖学的トポロジーと画像テクスチャは, 形状符号化およびデータ駆動型対向損失と強く結びついていることが判明した。
当社のアプローチは,光学フローやElastixなど,従来の非DLゴールド登録手法よりも優れています。
論文 参考訳(メタデータ) (2023-09-02T05:33:31Z) - DISA: DIfferentiable Similarity Approximation for Universal Multimodal
Registration [39.44133108254786]
表現力のあるクロスモーダル記述子を作成するための汎用フレームワークを提案する。
私たちは、小さな畳み込みニューラルネットワークの特徴空間において、既存のメトリクスをドット積で近似することで、これを実現する。
本手法は局所的なパッチベースの指標よりも数桁高速であり,臨床現場で直接適用することができる。
論文 参考訳(メタデータ) (2023-07-19T12:12:17Z) - ORRN: An ODE-based Recursive Registration Network for Deformable
Respiratory Motion Estimation with Lung 4DCT Images [7.180268723513929]
変形可能な画像登録(DIR)は、医療データにおける変形の定量化に重要な役割を果たす。
近年のDeep Learning法では,医用画像の登録に有望な精度とスピードアップが示されている。
本稿では,正規微分方程式(ODE)に基づく再帰画像登録ネットワークORRNを提案する。
論文 参考訳(メタデータ) (2023-05-24T03:26:26Z) - Implicit Neural Networks with Fourier-Feature Inputs for Free-breathing
Cardiac MRI Reconstruction [21.261567937245808]
本研究は、心臓を暗黙のニューラルネットワークで表現し、心臓の表現が測定値と整合するようにネットワークを適合させる再構築手法を提案する。
提案手法は,最先端の未訓練畳み込みニューラルネットワークと同等あるいはわずかに優れた画像品質を実現する。
論文 参考訳(メタデータ) (2023-05-11T14:14:30Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - DiffuseMorph: Unsupervised Deformable Image Registration Along
Continuous Trajectory Using Diffusion Models [31.826844124173984]
DiffuseMorphと呼ばれる拡散モデルに基づく新しい確率的画像登録手法を提案する。
本モデルは,動画像と固定画像の変形のスコア関数を学習する。
本手法は, トポロジー保存機能により, 柔軟かつ高精度な変形を可能とする。
論文 参考訳(メタデータ) (2021-12-09T08:41:23Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
内視鏡下粘膜下郭清術における高精度かつリアルタイムなランドマーク検出のための形状認識型関係ネットワークを提案する。
まず,ランドマーク間の空間的関係に関する先行知識を直感的に表現する関係キーポイント・ヒートマップを自動生成するアルゴリズムを考案する。
次に、事前知識を学習プロセスに段階的に組み込むために、2つの補完的な正規化手法を開発する。
論文 参考訳(メタデータ) (2021-11-08T07:57:30Z) - A Deep Discontinuity-Preserving Image Registration Network [73.03885837923599]
ほとんどの深層学習に基づく登録法は、所望の変形場が全世界的に滑らかで連続的であると仮定する。
本稿では、より優れた登録性能とリアルな変形場を得るために、弱い教師付き深部不連続保存画像登録ネットワーク(DDIR)を提案する。
本研究では, 心臓磁気共鳴(MR)画像の登録実験において, 登録精度を大幅に向上し, より現実的な変形を予測できることを実証した。
論文 参考訳(メタデータ) (2021-07-09T13:35:59Z) - CycleMorph: Cycle Consistent Unsupervised Deformable Image Registration [34.546992605648086]
サイクル整合性は、変形中のトポロジを保存するために暗黙の正規化を提供することで、画像登録性能を向上させる。
医学的・非医学的な応用から得られた様々なデータセットに対する実験結果から,提案手法は,数秒以内に多様な画像対を効果的かつ正確に登録できることを示した。
論文 参考訳(メタデータ) (2020-08-13T09:30:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。