Nondestructive discrimination of Bell states between distant parties
- URL: http://arxiv.org/abs/2309.00869v2
- Date: Tue, 2 Jul 2024 05:12:37 GMT
- Title: Nondestructive discrimination of Bell states between distant parties
- Authors: Bohdan Bilash, Youngrong Lim, Hyukjoon Kwon, Yosep Kim, Hyang-Tag Lim, Wooyeong Song, Yong-Su Kim,
- Abstract summary: We present a scheme for discriminating an arbitrary Bell state distributed to two distant parties without destroying it.
We show that our scheme can surpass classical bounds when applied to practical quantum processor.
- Score: 3.3764180740316543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying Bell states without destroying it is frequently dealt with in nowadays quantum technologies such as quantum communication and quantum computing. In practice, quantum entangled states are often distributed among distant parties, and it might be required to determine them separately at each location, without inline communication between parties. We present a scheme for discriminating an arbitrary Bell state distributed to two distant parties without destroying it. The scheme requires two entangled states that are pre-shared between the parties, and we show that without these ancillary resources, the probability of non-destructively discriminating the Bell state is bounded by 1/4, which is the same as random guessing. Furthermore, we demonstrate a proof-of-principle experiment through an IonQ quantum computer that our scheme can surpass classical bounds when applied to practical quantum processor.
Related papers
- Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Nonlocality activation in a photonic quantum network [0.44270590458998854]
Bell nonlocality is crucial for device-independent technologies like quantum key distribution and randomness generation.
We show that single copies of Bell-local states can give rise to nonlocality after being embedded into a quantum network of multiple parties.
Our findings have fundamental implications for nonlocality and enable the practical use of nonlocal correlations in real-world applications.
arXiv Detail & Related papers (2023-09-12T18:14:49Z) - Bell inequalities with overlapping measurements [52.81011822909395]
We study Bell inequalities where measurements of different parties can have overlap.
This allows to accommodate problems in quantum information.
The scenarios considered show an interesting behaviour with respect to Hilbert space dimension, overlap, and symmetry.
arXiv Detail & Related papers (2023-03-03T18:11:05Z) - Scalable Bell inequalities for graph states of arbitrary prime local
dimension and self-testing [0.0]
Bell nonlocality -- the existence of quantum correlations that cannot be explained by classical means -- is one of the most striking features of quantum mechanics.
This work provides a general construction of Bell inequalities maximally violated by graph states of any prime local dimension.
We analytically determine their maximal quantum violation, a number of high relevance for device-independent applications of Bell inequalities.
arXiv Detail & Related papers (2022-12-14T09:46:27Z) - Entangled Rendezvous: A Possible Application of Bell Non-Locality For
Mobile Agents on Networks [0.0]
We analyze, how Bell non-locality can be used by asymmetric location-aware agents trying to rendezvous on a finite network with a limited number of steps.
Our results show that for cubic graphs and cycles it is possible to gain an advantage by allowing the agents to use assistance of entangled quantum states.
arXiv Detail & Related papers (2022-07-28T23:04:48Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - Bipartite mixed states as quantum teleportation channels studied under
coherent and incoherent basis [0.0]
We show that the right choice of basis to be used to estimate coherence is the separable basis.
We compute the entanglement and quantum coherence in the two qubit mixed states prepared using the Bell states and one of the state from the computational basis.
We then calculate the teleportation of these mixed states and find the regions where the states have a fidelity greater than the classical teleportation fidelity.
arXiv Detail & Related papers (2022-06-16T10:40:49Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Single-photon nonlocality in quantum networks [55.41644538483948]
We show that the nonlocality of single-photon entangled states can nevertheless be revealed in a quantum network made only of beamsplitters and photodetectors.
Our results show that single-photon entanglement may constitute a promising solution to generate genuine network-nonlocal correlations useful for Bell-based quantum information protocols.
arXiv Detail & Related papers (2021-08-03T20:13:24Z) - Quantum Bell Nonlocality is Entanglement [10.628932392896374]
Bell nonlocality describes a manifestation of quantum mechanics that cannot be explained by any local hidden variable model.
We develop a dynamical framework in which quantum Bell nonlocality emerges as special form of entanglement.
arXiv Detail & Related papers (2020-12-12T23:02:06Z) - Heterogeneous Multipartite Entanglement Purification for
Size-Constrained Quantum Devices [68.8204255655161]
Purifying entanglement resources after their imperfect generation is an indispensable step towards using them in quantum architectures.
Here we depart from the typical purification paradigm for multipartite states explored in the last twenty years.
We find that smaller sacrificial' states, like Bell pairs, can be more useful in the purification of multipartite states than additional copies of these same states.
arXiv Detail & Related papers (2020-11-23T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.