論文の概要: Explainability for Large Language Models: A Survey
- arxiv url: http://arxiv.org/abs/2309.01029v1
- Date: Sat, 2 Sep 2023 22:14:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 23:35:40.730383
- Title: Explainability for Large Language Models: A Survey
- Title(参考訳): 大規模言語モデルの説明可能性:調査
- Authors: Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi
Cai, Shuaiqiang Wang, Dawei Yin, Mengnan Du
- Abstract要約: 大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。
本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
- 参考スコア(独自算出の注目度): 59.67574757137078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated impressive capabilities in
natural language processing. However, their internal mechanisms are still
unclear and this lack of transparency poses unwanted risks for downstream
applications. Therefore, understanding and explaining these models is crucial
for elucidating their behaviors, limitations, and social impacts. In this
paper, we introduce a taxonomy of explainability techniques and provide a
structured overview of methods for explaining Transformer-based language
models. We categorize techniques based on the training paradigms of LLMs:
traditional fine-tuning-based paradigm and prompting-based paradigm. For each
paradigm, we summarize the goals and dominant approaches for generating local
explanations of individual predictions and global explanations of overall model
knowledge. We also discuss metrics for evaluating generated explanations, and
discuss how explanations can be leveraged to debug models and improve
performance. Lastly, we examine key challenges and emerging opportunities for
explanation techniques in the era of LLMs in comparison to conventional machine
learning models.
- Abstract(参考訳): 大規模言語モデル(llm)は自然言語処理において印象的な能力を示している。
しかし、内部メカニズムはまだ不明であり、この透明性の欠如は下流アプリケーションにとって望ましくないリスクをもたらす。
したがって、これらのモデルを理解し説明することは、それらの行動、制限、社会的影響を解明するために重要である。
本稿では,説明可能性の分類法を紹介し,トランスフォーマティブに基づく言語モデルを説明する手法の構造化概要を示す。
従来の微調整型パラダイムとプロンプト型パラダイムという,LLMのトレーニングパラダイムに基づいたテクニックを分類する。
各パラダイムについて,個別予測の局所的説明とモデル知識の全体的説明を生成するための目標と支配的アプローチを要約する。
また、生成した説明を評価するためのメトリクスについても論じ、モデルのデバッグやパフォーマンス向上に説明をどのように活用できるかについて議論する。
最後に,従来の機械学習モデルと比較して,LLMの時代における重要な課題と説明手法の出現機会について検討する。
関連論文リスト
- DEAL: Disentangle and Localize Concept-level Explanations for VLMs [10.397502254316645]
大きな訓練済みのビジョンランゲージモデルでは、きめ細かい概念を特定できないかもしれない。
本研究では,人間のアノテーションを使わずに概念のDisEnt and Localize(アングル)概念レベルの説明を提案する。
実験結果から,提案手法はモデルの概念レベルの説明を,不整合性と局所性の観点から著しく改善することを示した。
論文 参考訳(メタデータ) (2024-07-19T15:39:19Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
この調査は、Large Language Models (LLMs) における説明可能性の向上を示唆している。
主に、トレーニング済みの Transformer ベースの LLM に重点を置いています。
説明可能性の活用を考える際に、モデル編集、制御生成、モデル拡張に集中するいくつかの魅力的な方法を検討する。
論文 参考訳(メタデータ) (2024-01-23T16:09:53Z) - Explanation-aware Soft Ensemble Empowers Large Language Model In-context
Learning [50.00090601424348]
大規模言語モデル(LLM)は、様々な自然言語理解タスクにおいて顕著な能力を示している。
我々は,LLMを用いたテキスト内学習を支援するための説明型ソフトアンサンブルフレームワークであるEASEを提案する。
論文 参考訳(メタデータ) (2023-11-13T06:13:38Z) - Explaining Large Language Model-Based Neural Semantic Parsers (Student
Abstract) [0.0]
大規模言語モデル (LLM) は意味解析などの構造化予測タスクにおいて強力な機能を示した。
我々の研究は、LLMに基づく意味的行動を説明するための様々な方法について研究している。
今後の研究をより深く理解していきたいと考えています。
論文 参考訳(メタデータ) (2023-01-25T16:12:43Z) - ExSum: From Local Explanations to Model Understanding [6.23934576145261]
ブラックボックスモデルの動作メカニズムを理解するために,解釈可能性法を開発した。
この目標をフルフィルするには、これらのメソッドによって生成された説明が正しいことと、人々が容易に確実に理解できることの両方が必要である。
本稿では,モデル理解の定量化のための数学的枠組みである説明要約(ExSum)を紹介する。
論文 参考訳(メタデータ) (2022-04-30T02:07:20Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
本稿では、プロセス結果予測の分野における説明可能性モデルと説明可能性モデルの忠実性を通して、説明可能性を定義する。
本稿では,イベントログの仕様に基づいて適切なモデルを選択することのできる,X-MOPというガイドラインのセットを提案する。
論文 参考訳(メタデータ) (2022-03-30T05:59:50Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Towards Interpretable Natural Language Understanding with Explanations
as Latent Variables [146.83882632854485]
そこで本研究では,人間に注釈付き説明文の小さなセットだけを必要とする自然言語理解の枠組みを構築した。
我々のフレームワークは、ニューラルネットワークの基本的な推論過程をモデル化する潜在変数として、自然言語の説明を扱う。
論文 参考訳(メタデータ) (2020-10-24T02:05:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。