論文の概要: An Accurate Graph Generative Model with Tunable Features
- arxiv url: http://arxiv.org/abs/2309.01158v1
- Date: Sun, 3 Sep 2023 12:34:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 21:14:50.572299
- Title: An Accurate Graph Generative Model with Tunable Features
- Title(参考訳): 可変特徴を持つ正確なグラフ生成モデル
- Authors: Takahiro Yokoyama, Yoshiki Sato, Sho Tsugawa, Kohei Watabe
- Abstract要約: 本稿では,グラフ特徴の誤りを返送する機構を新たに追加することで,GraphTuneの精度を向上させる手法を提案する。
実世界のグラフデータセットを用いて実験したところ、生成されたグラフの特徴は従来のモデルと比較して正確に調整されていることがわかった。
- 参考スコア(独自算出の注目度): 0.8192907805418583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A graph is a very common and powerful data structure used for modeling
communication and social networks. Models that generate graphs with arbitrary
features are important basic technologies in repeated simulations of networks
and prediction of topology changes. Although existing generative models for
graphs are useful for providing graphs similar to real-world graphs, graph
generation models with tunable features have been less explored in the field.
Previously, we have proposed GraphTune, a generative model for graphs that
continuously tune specific graph features of generated graphs while maintaining
most of the features of a given graph dataset. However, the tuning accuracy of
graph features in GraphTune has not been sufficient for practical applications.
In this paper, we propose a method to improve the accuracy of GraphTune by
adding a new mechanism to feed back errors of graph features of generated
graphs and by training them alternately and independently. Experiments on a
real-world graph dataset showed that the features in the generated graphs are
accurately tuned compared with conventional models.
- Abstract(参考訳): グラフは非常に一般的で強力なデータ構造であり、コミュニケーションやソーシャルネットワークのモデリングに使われる。
任意の特徴を持つグラフを生成するモデルは、ネットワークの繰り返しシミュレーションやトポロジの変化の予測において重要な基礎技術である。
既存のグラフ生成モデルは実世界のグラフに似たグラフを提供するのに有用であるが、チューニング可能な特徴を持つグラフ生成モデルはこの分野ではあまり研究されていない。
これまで我々は,グラフデータセットの特徴の大部分を維持しつつ,生成したグラフの特定のグラフ特徴を継続的にチューニングするグラフ生成モデルであるGraphTuneを提案してきた。
しかし,graphtuneのグラフ特徴のチューニング精度は実用的応用には不十分である。
本稿では,生成したグラフの特徴の誤りをフィードバックする新たなメカニズムを追加し,それらを相互に独立にトレーニングすることで,GraphTuneの精度を向上させる手法を提案する。
実世界のグラフデータセットにおける実験は、生成されたグラフの特徴が従来のモデルと比較して正確に調整されていることを示した。
関連論文リスト
- Neural Graph Generator: Feature-Conditioned Graph Generation using Latent Diffusion Models [22.794561387716502]
グラフ生成に条件付き潜在拡散モデルを利用する新しい手法であるニューラルグラフ生成器(NGG)を導入する。
NGGは複雑なグラフパターンをモデル化し、グラフ生成プロセスの制御を提供する。
論文 参考訳(メタデータ) (2024-03-03T15:28:47Z) - GraphRCG: Self-Conditioned Graph Generation [78.69810678803248]
本稿では,グラフ分布を明示的にモデル化する自己条件付きグラフ生成フレームワークを提案する。
本フレームワークは, 既存のグラフ生成手法に比べて, 学習データに対するグラフ品質と忠実度において優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-02T02:28:20Z) - GraphMaker: Can Diffusion Models Generate Large Attributed Graphs? [7.330479039715941]
ノード属性を持つ大規模グラフは、様々な現実世界のアプリケーションでますます一般的になっている。
従来のグラフ生成法は、これらの複雑な構造を扱う能力に制限がある。
本稿では,大きな属性グラフを生成するために特別に設計された新しい拡散モデルであるGraphMakerを紹介する。
論文 参考訳(メタデータ) (2023-10-20T22:12:46Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
グラフの生成は、非ユークリッド構造の複雑な性質を理解する必要がある実世界のタスクにとって大きな課題である。
本稿では,拡散過程の最終グラフ構造を明示的に学習することにより,グラフのトポロジーをモデル化する生成フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-07T17:07:46Z) - GraphTune: A Learning-based Graph Generative Model with Tunable
Structural Features [3.3248768737711045]
本研究では,グローバルな構造的特徴の値を条件として調整できる生成モデルを提案する。
GraphTuneと呼ばれる私たちのモデルは、生成されたグラフの構造的特徴の値を調整できます。
論文 参考訳(メタデータ) (2022-01-27T13:14:53Z) - Graph2Graph Learning with Conditional Autoregressive Models [8.203106789678397]
グラフ・ツー・グラフ学習のための条件付きオートレアモデルを提案する。
本稿では,グラフアルゴリズムの挑戦的部分グラフ予測実験を通じて,その表現能力について述べる。
論文 参考訳(メタデータ) (2021-06-06T20:28:07Z) - Learning Graphon Autoencoders for Generative Graph Modeling [91.32624399902755]
Graphonは任意のサイズでグラフを生成する非パラメトリックモデルであり、グラフから簡単に誘導できる。
解析可能でスケーラブルなグラフ生成モデルを構築するために,textitgraphon autoencoder という新しいフレームワークを提案する。
線形グルーポン分解モデルはデコーダとして機能し、潜在表現を活用して誘導されたグルーポンを再構成する。
論文 参考訳(メタデータ) (2021-05-29T08:11:40Z) - A Tunable Model for Graph Generation Using LSTM and Conditional VAE [1.399948157377307]
データからグラフの構造的特徴を学習しながら、特定の特徴をチューニングできる生成モデルを提案する。
モデルによって生成される様々な特徴を持つグラフのデータセットを用いて、我々のモデルが特定の特徴を持つグラフを生成できることを確認する。
論文 参考訳(メタデータ) (2021-04-15T06:47:14Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
本稿では,グラフクラスタメンバシップを潜在因子とするDGVAE(Dirichlet Graph Variational Autoencoder)を提案する。
バランスグラフカットにおける低パス特性により、入力グラフをクラスタメンバシップにエンコードする、Heattsと呼ばれるGNNの新しい変種を提案する。
論文 参考訳(メタデータ) (2020-10-09T07:35:26Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。