Communication-Efficient Design of Learning System for Energy Demand
Forecasting of Electrical Vehicles
- URL: http://arxiv.org/abs/2309.01297v1
- Date: Mon, 4 Sep 2023 00:30:25 GMT
- Title: Communication-Efficient Design of Learning System for Energy Demand
Forecasting of Electrical Vehicles
- Authors: Jiacong Xu, Riley Kilfoyle, Zixiang Xiong, Ligang Lu
- Abstract summary: Machine learning applications to time series energy utilization forecasting problems are a challenging assignment due to a variety of factors.
We propose a communication-efficient time series forecasting model combining the most recent advancements in transformer architectures.
Our proposed model is shown to have parity in performance while consuming significantly lower data rates during training.
- Score: 5.704507128756151
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) applications to time series energy utilization
forecasting problems are a challenging assignment due to a variety of factors.
Chief among these is the non-homogeneity of the energy utilization datasets and
the geographical dispersion of energy consumers. Furthermore, these ML models
require vast amounts of training data and communications overhead in order to
develop an effective model. In this paper, we propose a communication-efficient
time series forecasting model combining the most recent advancements in
transformer architectures implemented across a geographically dispersed series
of EV charging stations and an efficient variant of federated learning (FL) to
enable distributed training. The time series prediction performance and
communication overhead cost of our FL are compared against their counterpart
models and shown to have parity in performance while consuming significantly
lower data rates during training. Additionally, the comparison is made across
EV charging as well as other time series datasets to demonstrate the
flexibility of our proposed model in generalized time series prediction beyond
energy demand. The source code for this work is available at
https://github.com/XuJiacong/LoGTST_PSGF
Related papers
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - Multiscale Spatio-Temporal Enhanced Short-term Load Forecasting of Electric Vehicle Charging Stations [4.239428835958199]
The rapid expansion of electric vehicles (EVs) has rendered the load forecasting of electric vehicle charging stations (EVCS) increasingly critical.
The primary challenge in achieving precise load forecasting for EVCS lies in accounting for the nonlinear of charging behaviors, the spatial interactions among different stations, and the intricate temporal variations in usage patterns.
We propose a Multiscale Spatio-Temporal Enhanced Model (MSTEM) for effective load forecasting at EVCS.
arXiv Detail & Related papers (2024-05-29T12:54:22Z) - Addressing Heterogeneity in Federated Load Forecasting with Personalization Layers [3.933147844455233]
We propose the use of personalization layers for load forecasting in a general framework called PL-FL.
We show that PL-FL outperforms FL and purely local training, while requiring lower communication bandwidth than FL.
arXiv Detail & Related papers (2024-04-01T22:53:09Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Secure short-term load forecasting for smart grids with
transformer-based federated learning [0.0]
Electricity load forecasting is an essential task within smart grids to assist demand and supply balance.
Fine-grained load profiles can expose users' electricity consumption behaviors, which raises privacy and security concerns.
This paper presents a novel transformer-based deep learning approach with federated learning for short-term electricity load prediction.
arXiv Detail & Related papers (2023-10-26T15:27:55Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Federated Prompt Learning for Weather Foundation Models on Devices [37.88417074427373]
On-device intelligence for weather forecasting uses local deep learning models to analyze weather patterns without centralized cloud computing.
This paper propose Federated Prompt Learning for Weather Foundation Models on Devices (FedPoD)
FedPoD enables devices to obtain highly customized models while maintaining communication efficiency.
arXiv Detail & Related papers (2023-05-23T16:59:20Z) - Asynchronous Multi-Model Dynamic Federated Learning over Wireless
Networks: Theory, Modeling, and Optimization [20.741776617129208]
Federated learning (FL) has emerged as a key technique for distributed machine learning (ML)
We first formulate rectangular scheduling steps and functions to capture the impact of system parameters on learning performance.
Our analysis sheds light on the joint impact of device training variables and asynchronous scheduling decisions.
arXiv Detail & Related papers (2023-05-22T21:39:38Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
We investigate real-time machine learning in a federated edge intelligence (FEI) system.
FEI systems exhibit heterogenous communication and computational resource distribution.
We propose a time-sensitive federated learning (TS-FL) framework to minimize the overall run-time for collaboratively training a shared ML model.
arXiv Detail & Related papers (2023-01-26T08:13:22Z) - Scheduling and Aggregation Design for Asynchronous Federated Learning
over Wireless Networks [56.91063444859008]
Federated Learning (FL) is a collaborative machine learning framework that combines on-device training and server-based aggregation.
We propose an asynchronous FL design with periodic aggregation to tackle the straggler issue in FL systems.
We show that an age-aware'' aggregation weighting design can significantly improve the learning performance in an asynchronous FL setting.
arXiv Detail & Related papers (2022-12-14T17:33:01Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
We propose ALOE, a new algorithm for learning conditional and unconditional EBMs for discrete structured data.
We show that the energy function and sampler can be trained efficiently via a new variational form of power iteration.
We present an energy model guided fuzzer for software testing that achieves comparable performance to well engineered fuzzing engines like libfuzzer.
arXiv Detail & Related papers (2020-11-10T19:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.