論文の概要: Model Review: A PROMISEing Opportunity
- arxiv url: http://arxiv.org/abs/2309.01314v2
- Date: Thu, 7 Sep 2023 02:32:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 09:15:50.055310
- Title: Model Review: A PROMISEing Opportunity
- Title(参考訳): モデルレビュー: 約束の機会
- Authors: Tim Menzies
- Abstract要約: ProMISEコミュニティは、モデルレビューの問題に焦点を合わせていると提案する。
PROMISEコミュニティは、人間とAIの関係を再定義し、単純化し、改善するために必要なスキルと経験を持っている。
- 参考スコア(独自算出の注目度): 13.19204187502255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To make models more understandable and correctable, I propose that the
PROMISE community pivots to the problem of model review. Over the years, there
have been many reports that very simple models can perform exceptionally well.
Yet, where are the researchers asking "say, does that mean that we could make
software analytics simpler and more comprehensible?" This is an important
question, since humans often have difficulty accurately assessing complex
models (leading to unreliable and sometimes dangerous results). Prior PROMISE
results have shown that data mining can effectively summarizing large models/
data sets into simpler and smaller ones. Therefore, the PROMISE community has
the skills and experience needed to redefine, simplify, and improve the
relationship between humans and AI.
- Abstract(参考訳): モデルをより理解しやすく、修正できるようにするため、PROMISEコミュニティがモデルレビューの問題に転換することを提案する。
長年にわたり、非常に単純なモデルが非常によく機能する、という多くの報告があった。
しかし、研究者たちは「例えば、ソフトウェア分析をシンプルに、より理解しやすいものにすることはできるのだろうか?
これは重要な問題であり、人間は複雑なモデル(信頼できない、時には危険な結果につながる)を正確に評価することが難しい。
ProMISEの以前の結果は、データマイニングが大規模モデルやデータセットをよりシンプルで小さなものに効果的に要約できることを示している。
したがって、ProMISEコミュニティは人間とAIの関係を再定義し、単純化し、改善するために必要なスキルと経験を持っている。
関連論文リスト
- Improving the Capabilities of Large Language Model Based Marketing Analytics Copilots With Semantic Search And Fine-Tuning [0.9787137564521711]
本稿では, 意味探索, プロンプトエンジニアリング, 微調整を組み合わせることで, LLMのタスクを正確に実行する能力を大幅に向上させることができることを示す。
GPT-4のようなプロプライエタリなモデルと、Llama-2-70bのようなオープンソースのモデル、および様々な埋め込み方法を比較します。
論文 参考訳(メタデータ) (2024-04-16T03:39:16Z) - Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models [115.501751261878]
人為的なデータに基づく微調整言語モデル(LM)が普及している。
我々は、スカラーフィードバックにアクセス可能なタスクにおいて、人間のデータを超えることができるかどうか検討する。
ReST$EM$はモデルサイズに好適にスケールし、人間のデータのみによる微調整を大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2023-12-11T18:17:43Z) - Scaling Laws Do Not Scale [54.72120385955072]
最近の研究によると、データセットのサイズが大きくなると、そのデータセットでトレーニングされたモデルのパフォーマンスが向上する。
このスケーリング法則の関係は、モデルのアウトプットの質を異なる集団がどのように認識するかと一致しないパフォーマンスを測定するために使われる指標に依存する、と我々は主張する。
異なるコミュニティは、互いに緊張関係にある価値を持ち、モデル評価に使用されるメトリクスについて、困難で、潜在的に不可能な選択をもたらす可能性がある。
論文 参考訳(メタデータ) (2023-07-05T15:32:21Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - Evaluation of Categorical Generative Models -- Bridging the Gap Between
Real and Synthetic Data [18.142397311464343]
生成モデルに対する適切な拡張性の評価手法を提案する。
我々は、より困難なモデリングタスクに対応する、ますます大きな確率空間を考える。
我々は, 合成生成モデルと最先端のカテゴリー生成モデルの両方について, 合成実験により評価方法を検証する。
論文 参考訳(メタデータ) (2022-10-28T21:05:25Z) - Predicting on the Edge: Identifying Where a Larger Model Does Better [61.793778186198864]
小型モデルが最も不確実な例では,大規模モデルが最も改善されていることを示す。
小型モデルが不確実な場合,サンプルを大モデルにデフェクトするスイッチャーモデルにより,性能と資源利用の大幅な向上が達成できることを示す。
論文 参考訳(メタデータ) (2022-02-15T18:53:14Z) - Towards Model-informed Precision Dosing with Expert-in-the-loop Machine
Learning [0.0]
モデル学習ループに人的専門家を取り入れることで、モデル学習を加速し、解釈可能性を向上させるMLフレームワークを検討する。
本稿では,データアノテーションのコストが高い学習問題に対処することを目的とした,新たなヒューマン・イン・ザ・ループMLフレームワークを提案する。
精度測定への応用により,本手法はデータから解釈可能なルールを学習し,専門家の作業負荷を低減できる可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-28T03:45:09Z) - On the Efficacy of Adversarial Data Collection for Question Answering:
Results from a Large-Scale Randomized Study [65.17429512679695]
逆データ収集(ADC)では、人間の労働力がモデルとリアルタイムで対話し、誤った予測を誘発する例を作成しようとする。
ADCの直感的な魅力にも拘わらず、敵対的データセットのトレーニングがより堅牢なモデルを生成するかどうかは不明だ。
論文 参考訳(メタデータ) (2021-06-02T00:48:33Z) - When Can Models Learn From Explanations? A Formal Framework for
Understanding the Roles of Explanation Data [84.87772675171412]
個々のデータポイントの説明がモデリング性能を向上させる状況について検討する。
e-SNLI、TACRED、SemEvalの3つの既存のデータセットを使って説明します。
論文 参考訳(メタデータ) (2021-02-03T18:57:08Z) - Lifting Interpretability-Performance Trade-off via Automated Feature
Engineering [5.802346990263708]
複雑なブラックボックス予測モデルは高い性能を持つが、解釈可能性の欠如は問題を引き起こす。
本稿では, 弾性ブラックボックスを代理モデルとして用いて, よりシンプルで不透明で, 正確かつ解釈可能なガラスボックスモデルを作成する方法を提案する。
論文 参考訳(メタデータ) (2020-02-11T09:16:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。