論文の概要: FAU-Net: An Attention U-Net Extension with Feature Pyramid Attention for
Prostate Cancer Segmentation
- arxiv url: http://arxiv.org/abs/2309.01322v1
- Date: Mon, 4 Sep 2023 02:54:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 20:15:04.508273
- Title: FAU-Net: An Attention U-Net Extension with Feature Pyramid Attention for
Prostate Cancer Segmentation
- Title(参考訳): FAU-Net:前立腺癌分節に対する特徴ピラミッド注意付き注意U-Net拡張
- Authors: Pablo Cesar Quihui-Rubio and Daniel Flores-Araiza and Miguel
Gonzalez-Mendoza and Christian Mata and Gilberto Ochoa-Ruiz
- Abstract要約: U-Netに基づくMRI画像における前立腺領域のセグメンテーションの深層学習手法を提案する。
提案したモデルは、7つの異なるU-Netアーキテクチャと比較される。
- 参考スコア(独自算出の注目度): 1.8499314936771563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This contribution presents a deep learning method for the segmentation of
prostate zones in MRI images based on U-Net using additive and feature pyramid
attention modules, which can improve the workflow of prostate cancer detection
and diagnosis. The proposed model is compared to seven different U-Net-based
architectures. The automatic segmentation performance of each model of the
central zone (CZ), peripheral zone (PZ), transition zone (TZ) and Tumor were
evaluated using Dice Score (DSC), and the Intersection over Union (IoU)
metrics. The proposed alternative achieved a mean DSC of 84.15% and IoU of
76.9% in the test set, outperforming most of the studied models in this work
except from R2U-Net and attention R2U-Net architectures.
- Abstract(参考訳): 本研究は,MRI画像における前立腺領域のセグメンテーションを付加的および特徴的ピラミッドアテンションモジュールを用いて深層学習し,前立腺がんの検出と診断のワークフローを改善することを目的とする。
提案したモデルは、7つの異なるU-Netアーキテクチャと比較される。
中心領域(CZ),周辺領域(PZ),遷移帯(TZ),腫瘍の各モデルの自動セグメンテーション性能をDice Score(DSC)およびIoU(IoU)メトリクスを用いて評価した。
提案された代替案は平均84.15%のdscと76.9%のiouを達成し、r2u-netとアテンションr2u-netアーキテクチャを除いて、この研究で研究されたモデルの大半を上回った。
関連論文リスト
- Y-CA-Net: A Convolutional Attention Based Network for Volumetric Medical Image Segmentation [47.12719953712902]
差別的なローカル機能は、注目ベースのVSメソッドのパフォーマンスの鍵となるコンポーネントである。
コンボリューションエンコーダ分岐をトランスフォーマーバックボーンに組み込んで,局所的特徴と大域的特徴を並列に抽出する。
Y-CT-Netは、複数の医療セグメンテーションタスクにおいて競合性能を達成する。
論文 参考訳(メタデータ) (2024-10-01T18:50:45Z) - M3BUNet: Mobile Mean Max UNet for Pancreas Segmentation on CT-Scans [25.636974007788986]
我々は,M3BUNetを提案する。M3BUNetはMobileNetとU-Netニューラルネットワークの融合で,2段階に分けて膵CT像を段階的に分割する,新しい平均値(MM)アテンションを備える。
細かなセグメンテーションの段階では、ウェーブレット分解フィルタを用いてマルチインプット画像を作成することにより、膵のセグメンテーション性能が向上することがわかった。
提案手法は,最大89.53%のDice similarity Coefficient(DSC)値と最大81.16のIntersection Over Union(IOU)スコアをNIH pancreasデータセットで達成する。
論文 参考訳(メタデータ) (2024-01-18T23:10:08Z) - OCU-Net: A Novel U-Net Architecture for Enhanced Oral Cancer
Segmentation [22.652902408898733]
本研究は,口腔癌検出専用のU-NetイメージセグメンテーションアーキテクチャであるOCU-Netを提案する。
OCU-Netは、Channel and Space Attention Fusion (CSAF)モジュールのような高度なディープラーニングモジュールを組み込んでいる。
本研究で用いた2つのデータセットの口腔癌セグメンテーションにおいて,これらのモジュールの組み込みは優れた性能を示した。
論文 参考訳(メタデータ) (2023-10-03T23:25:19Z) - Assessing the performance of deep learning-based models for prostate
cancer segmentation using uncertainty scores [1.0499611180329804]
目的は前立腺がんの検出と診断のワークフローを改善することである。
最高性能モデルはアテンション R2U-Net で、連合(IoU)の平均インターセクションは76.3%、Dice similarity Coefficient(DSC)は全ゾーンのセグメンテーションの85%を達成している。
論文 参考訳(メタデータ) (2023-08-09T01:38:58Z) - Semantic segmentation of surgical hyperspectral images under geometric
domain shifts [69.91792194237212]
本稿では、幾何学的アウト・オブ・ディストリビューション(OOD)データの存在下で、最先端のセマンティックセグメンテーションネットワークを初めて分析する。
有機移植(Organ transplantation)と呼ばれる専用の拡張技術により、一般化可能性にも対処する。
提案手法は,SOA DSCの最大67 % (RGB) と90% (HSI) を改善し,実際のOODテストデータ上での分配内性能と同等の性能を示す。
論文 参考訳(メタデータ) (2023-03-20T09:50:07Z) - Comparative analysis of deep learning approaches for AgNOR-stained
cytology samples interpretation [52.77024349608834]
本稿では, 深層学習手法を用いて, 好気性ヌクレオラオーガナイザ領域 (AgNOR) 染色スライダを解析する方法を提案する。
以上の結果から,バックボーンとしてResNet-18やResNet-34を用いたU-Netを用いたセマンティックセマンティックセマンティックセマンティクスは類似した結果を示す。
最も優れたモデルは、それぞれ0.83、0.92、0.99の核、クラスター、衛星のIoUを示す。
論文 参考訳(メタデータ) (2022-10-19T15:15:32Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
TS-MDLの最初の段階では、mphiMeshSegNetは0.953pm0.076$で平均Dice類似係数(DSC)に達した。
PointNet-Reg は平均絶対誤差 (MAE) が 0.623pm0.718, mm$ であり、ランドマーク検出の他のネットワークよりも優れている。
論文 参考訳(メタデータ) (2021-09-24T13:00:26Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z) - KiU-Net: Towards Accurate Segmentation of Biomedical Images using
Over-complete Representations [59.65174244047216]
本稿では,高次元にデータを投影するオーバーコンプリートアーキテクチャ(Ki-Net)を提案する。
このネットワークは、U-Netで拡張されると、小さな解剖学的ランドマークを分割する場合に大幅に改善される。
早期新生児の2次元超音波による脳解剖学的セグメント化の課題について検討した。
論文 参考訳(メタデータ) (2020-06-08T18:59:24Z) - Convolutional Neural Networks based automated segmentation and labelling
of the lumbar spine X-ray [0.0]
本研究の目的は, 腰椎X線を手動で付加した730個の椎間板にトレーニングした, 異なるセグメンテーションネットワークのセグメンテーション精度について検討することである。
セグメンテーションネットワークはセグメンテーションネットワークと比較された。
論文 参考訳(メタデータ) (2020-04-04T20:15:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。