論文の概要: Convolutional Neural Networks based automated segmentation and labelling
of the lumbar spine X-ray
- arxiv url: http://arxiv.org/abs/2004.03364v1
- Date: Sat, 4 Apr 2020 20:15:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 23:01:49.879164
- Title: Convolutional Neural Networks based automated segmentation and labelling
of the lumbar spine X-ray
- Title(参考訳): 畳み込みニューラルネットワークを用いた腰椎X線の自動セグメンテーションとラベル付け
- Authors: Sandor Konya, Sai Natarajan T R, Hassan Allouch, Kais Abu Nahleh,
Omneya Yakout Dogheim, Heinrich Boehm
- Abstract要約: 本研究の目的は, 腰椎X線を手動で付加した730個の椎間板にトレーニングした, 異なるセグメンテーションネットワークのセグメンテーション精度について検討することである。
セグメンテーションネットワークはセグメンテーションネットワークと比較された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aim of this study is to investigate the segmentation accuracies of
different segmentation networks trained on 730 manually annotated lateral
lumbar spine X-rays. Instance segmentation networks were compared to semantic
segmentation networks. The study cohort comprised diseased spines and
postoperative images with metallic implants. The average mean accuracy and mean
intersection over union (IoU) was up to 3 percent better for the best
performing instance segmentation model, the average pixel accuracy and weighted
IoU were slightly better for the best performing semantic segmentation model.
Moreover, the inferences of the instance segmentation models are easier to
implement for further processing pipelines in clinical decision support.
- Abstract(参考訳): 本研究の目的は, 腰椎X線を手動でアノテートした730本の異なるセグメンテーションネットワークのセグメンテーション精度を検討することである。
インスタンスセグメンテーションネットワークとセマンティックセグメンテーションネットワークを比較した。
この研究は、金属インプラントを用いた脊椎疾患と術後画像のコホートであった。
平均的平均精度と平均的結合(IoU)は,最高のインスタンスセグメンテーションモデルでは最大3%,平均画素精度と重み付きIoUは最高のセグメンテーションモデルではわずかに向上した。
さらに、インスタンスセグメンテーションモデルの推論は、臨床決定支援でさらなるパイプラインを処理するための実装が容易である。
関連論文リスト
- A Deep Learning Approach to Teeth Segmentation and Orientation from
Panoramic X-rays [1.7366868394060984]
本研究では, 深層学習技術を活用したパノラマX線画像からの歯のセグメンテーションと配向に対する包括的アプローチを提案する。
創傷セグメンテーションのために開発された人気モデルであるFUSegNetをベースとしたモデルを構築した。
主成分分析(PCA)により, 歯の配向を正確に推定する指向性バウンディングボックス(OBB)の生成を導入する。
論文 参考訳(メタデータ) (2023-10-26T06:01:25Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
追加の注意層を持つU-net畳み込みニューラルネットワークは、最高の手首軟骨分割性能を提供する。
非MRI法を用いて軟骨体積測定の誤差を独立に評価すべきである。
論文 参考訳(メタデータ) (2022-06-22T14:19:06Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Multi-organ Segmentation Network with Adversarial Performance Validator [10.775440368500416]
本稿では,2次元から3次元のセグメンテーションフレームワークに対向的な性能検証ネットワークを導入する。
提案したネットワークは, 2次元粗い結果から3次元高品質なセグメンテーションマスクへの変換を行い, 共同最適化によりセグメンテーション精度が向上する。
NIH膵分節データセットの実験では、提案したネットワークが小臓器分節の最先端の精度を達成し、過去の最高性能を上回った。
論文 参考訳(メタデータ) (2022-04-16T18:00:29Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
不完全アノテーションを用いた胸部X線分割のための新しいカスケードロバスト学習フレームワークを提案する。
モデルは3つの独立したネットワークから成り,ピアネットワークから有用な情報を効果的に学習できる。
提案手法は,従来の手法と比較して,セグメント化タスクの精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-04-05T15:50:16Z) - Bidirectional RNN-based Few Shot Learning for 3D Medical Image
Segmentation [11.873435088539459]
対象臓器アノテーションの限られたトレーニングサンプルを用いて, 正確な臓器分類を行うための3次元ショットセグメンテーションフレームワークを提案する。
U-Netのようなネットワークは、サポートデータの2次元スライスとクエリイメージの関係を学習することでセグメンテーションを予測するように設計されている。
異なる臓器のアノテーションを付加した3つの3次元CTデータセットを用いて,提案モデルの評価を行った。
論文 参考訳(メタデータ) (2020-11-19T01:44:55Z) - Progressive Adversarial Semantic Segmentation [11.323677925193438]
深い畳み込みニューラルネットワークは、完全な監視が与えられた場合、非常によく機能する。
画像解析タスクのための完全教師付きモデルの成功は、大量のラベル付きデータの入手に限られる。
本稿では,新しい医用画像分割モデル,Progressive Adrial Semantic(PASS)を提案する。
論文 参考訳(メタデータ) (2020-05-08T22:48:00Z) - Cross-stained Segmentation from Renal Biopsy Images Using Multi-level
Adversarial Learning [13.30545860115548]
クロスステンドセグメンテーションのための堅牢で柔軟なモデルを設計する。
対象の染色画像のセグメンテーション性能を改善し、ラベルなしデータを用いてラベル付きデータと類似の精度を実現する。
論文 参考訳(メタデータ) (2020-02-20T06:49:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。