A generalized vector-field framework for mobility
- URL: http://arxiv.org/abs/2309.01415v1
- Date: Mon, 4 Sep 2023 07:50:08 GMT
- Title: A generalized vector-field framework for mobility
- Authors: Erjian Liu, Mattia Mazzoli, Xiao-Yong Yan and Jose J. Ramasco
- Abstract summary: We propose a general vector-field representation starting from individuals' trajectories valid for any type of mobility.
We show how individuals' elections determine the mesoscopic properties of the mobility field.
Our framework is an essential tool to capture hidden symmetries in mesoscopic urban mobility.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Trip flow between areas is a fundamental metric for human mobility research.
Given its identification with travel demand and its relevance for
transportation and urban planning, many models have been developed for its
estimation. These models focus on flow intensity, disregarding the information
provided by the local mobility orientation. A field-theoretic approach can
overcome this issue and handling both intensity and direction at once. Here we
propose a general vector-field representation starting from individuals'
trajectories valid for any type of mobility. By introducing four models of
spatial exploration, we show how individuals' elections determine the
mesoscopic properties of the mobility field. Distance optimization in long
displacements and random-like local exploration are necessary to reproduce
empirical field features observed in Chinese logistic data and in New York City
Foursquare check-ins. Our framework is an essential tool to capture hidden
symmetries in mesoscopic urban mobility, it establishes a benchmark to test the
validity of mobility models and opens the doors to the use of field theory in a
wide spectrum of applications.
Related papers
- Pretrained Mobility Transformer: A Foundation Model for Human Mobility [11.713796525742405]
textbfPretrained textbfMobility textbfTransformer (PMT)
textbfMobility textbfTransformer (PMT)
textbfPretrained textbfMobility textbfTransformer (PMT)
arXiv Detail & Related papers (2024-05-29T00:07:22Z) - Deep Activity Model: A Generative Approach for Human Mobility Pattern Synthesis [11.90100976089832]
We develop a novel generative deep learning approach for human mobility modeling and synthesis.
It incorporates both activity patterns and location trajectories using open-source data.
The model can be fine-tuned with local data, allowing it to adapt to accurately represent mobility patterns across diverse regions.
arXiv Detail & Related papers (2024-05-24T02:04:10Z) - Regions are Who Walk Them: a Large Pre-trained Spatiotemporal Model
Based on Human Mobility for Ubiquitous Urban Sensing [24.48869607589127]
We propose a largetemporal model based on trajectories (RAW) to tap into the rich information within human mobility data.
Our proposed method, relying solely on human mobility data without additional features, exhibits certain level of relevance in user profiling and region analysis.
arXiv Detail & Related papers (2023-11-17T11:55:11Z) - Priority-Centric Human Motion Generation in Discrete Latent Space [59.401128190423535]
We introduce a Priority-Centric Motion Discrete Diffusion Model (M2DM) for text-to-motion generation.
M2DM incorporates a global self-attention mechanism and a regularization term to counteract code collapse.
We also present a motion discrete diffusion model that employs an innovative noise schedule, determined by the significance of each motion token.
arXiv Detail & Related papers (2023-08-28T10:40:16Z) - Spatiotemporal-Augmented Graph Neural Networks for Human Mobility Simulation [35.89805766554052]
We propose a novel framework to model the dynamictemporal effects of locations, namely SRpatio-Augmented gaph neural networks.
The STAR framework designs varioustemporal graphs to capture the behaviors correspondence and builds a novel branch to simulate the varying dwells in locations, which duration is finally optimized in an adversarial manner.
arXiv Detail & Related papers (2023-06-15T11:47:45Z) - Urban Regional Function Guided Traffic Flow Prediction [117.75679676806296]
We propose a novel module named POI-MetaBlock, which utilizes the functionality of each region as metadata.
Our module significantly improves the performance of traffic flow prediction and outperforms state-of-the-art methods that use metadata.
arXiv Detail & Related papers (2023-03-17T06:03:49Z) - Motion Transformer with Global Intention Localization and Local Movement
Refinement [103.75625476231401]
Motion TRansformer (MTR) models motion prediction as the joint optimization of global intention localization and local movement refinement.
MTR achieves state-of-the-art performance on both the marginal and joint motion prediction challenges.
arXiv Detail & Related papers (2022-09-27T16:23:14Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - Studying Person-Specific Pointing and Gaze Behavior for Multimodal
Referencing of Outside Objects from a Moving Vehicle [58.720142291102135]
Hand pointing and eye gaze have been extensively investigated in automotive applications for object selection and referencing.
Existing outside-the-vehicle referencing methods focus on a static situation, whereas the situation in a moving vehicle is highly dynamic and subject to safety-critical constraints.
We investigate the specific characteristics of each modality and the interaction between them when used in the task of referencing outside objects.
arXiv Detail & Related papers (2020-09-23T14:56:19Z) - TraLFM: Latent Factor Modeling of Traffic Trajectory Data [16.010576606023417]
We propose a novel generative model called TraLFM to mine human mobility patterns underlying traffic trajectories.
TraLFM is based on three key observations: (1) human mobility patterns are reflected by the sequences of locations in the trajectories; (2) human mobility patterns vary with people; and (3) human mobility patterns tend to be cyclical and change over time.
arXiv Detail & Related papers (2020-03-16T04:41:39Z) - Learning to Move with Affordance Maps [57.198806691838364]
The ability to autonomously explore and navigate a physical space is a fundamental requirement for virtually any mobile autonomous agent.
Traditional SLAM-based approaches for exploration and navigation largely focus on leveraging scene geometry.
We show that learned affordance maps can be used to augment traditional approaches for both exploration and navigation, providing significant improvements in performance.
arXiv Detail & Related papers (2020-01-08T04:05:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.