A Universal Model for Human Mobility Prediction
- URL: http://arxiv.org/abs/2412.15294v1
- Date: Thu, 19 Dec 2024 07:38:13 GMT
- Title: A Universal Model for Human Mobility Prediction
- Authors: Qingyue Long, Yuan Yuan, Yong Li,
- Abstract summary: We propose a universal human mobility prediction model (named UniMob), which can be applied to both individual trajectory and crowd flow.
Our model achieves the highest performance improvement of more than 14% and 25% in MAPE and Accuracy@5.
- Score: 7.542075639525391
- License:
- Abstract: Predicting human mobility is crucial for urban planning, traffic control, and emergency response. Mobility behaviors can be categorized into individual and collective, and these behaviors are recorded by diverse mobility data, such as individual trajectory and crowd flow. As different modalities of mobility data, individual trajectory and crowd flow have a close coupling relationship. Crowd flows originate from the bottom-up aggregation of individual trajectories, while the constraints imposed by crowd flows shape these individual trajectories. Existing mobility prediction methods are limited to single tasks due to modal gaps between individual trajectory and crowd flow. In this work, we aim to unify mobility prediction to break through the limitations of task-specific models. We propose a universal human mobility prediction model (named UniMob), which can be applied to both individual trajectory and crowd flow. UniMob leverages a multi-view mobility tokenizer that transforms both trajectory and flow data into spatiotemporal tokens, facilitating unified sequential modeling through a diffusion transformer architecture. To bridge the gap between the different characteristics of these two data modalities, we implement a novel bidirectional individual and collective alignment mechanism. This mechanism enables learning common spatiotemporal patterns from different mobility data, facilitating mutual enhancement of both trajectory and flow predictions. Extensive experiments on real-world datasets validate the superiority of our model over state-of-the-art baselines in trajectory and flow prediction. Especially in noisy and scarce data scenarios, our model achieves the highest performance improvement of more than 14% and 25% in MAPE and Accuracy@5.
Related papers
- Multi-Transmotion: Pre-trained Model for Human Motion Prediction [68.87010221355223]
Multi-Transmotion is an innovative transformer-based model designed for cross-modality pre-training.
Our methodology demonstrates competitive performance across various datasets on several downstream tasks.
arXiv Detail & Related papers (2024-11-04T23:15:21Z) - FoMo: A Foundation Model for Mobile Traffic Forecasting with Diffusion Model [5.96737388771505]
We propose an innovative Foundation model for Mobile traffic forecasting (FoMo)
FoMo aims to handle diverse forecasting tasks of short/long-term predictions and distribution generation across multiple cities to support network planning and optimization.
FoMo combines diffusion models and transformers, where various universality masks are proposed to enable FoMo to learn intrinsic features of different tasks.
arXiv Detail & Related papers (2024-10-20T07:32:16Z) - Mixing Individual and Collective Behaviours to Predict Out-of-Routine Mobility [4.442030973972382]
This study introduces an approach that dynamically integrates individual and collective mobility behaviours.
We demonstrate its superior performance in predicting out-of-routine mobility, surpassing even advanced deep learning methods.
By bridging the gap between individual and collective behaviours, our approach offers transparent and accurate predictions.
arXiv Detail & Related papers (2024-04-03T13:38:49Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Motion Transformer with Global Intention Localization and Local Movement
Refinement [103.75625476231401]
Motion TRansformer (MTR) models motion prediction as the joint optimization of global intention localization and local movement refinement.
MTR achieves state-of-the-art performance on both the marginal and joint motion prediction challenges.
arXiv Detail & Related papers (2022-09-27T16:23:14Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - Multi-modal Trajectory Prediction for Autonomous Driving with Semantic
Map and Dynamic Graph Attention Network [12.791191495432829]
There are several challenges in trajectory prediction in real-world traffic scenarios.
Inspired by people's natural habit of navigating traffic with attention to their goals and surroundings, this paper presents a unique graph attention network.
The network is designed to model the dynamic social interactions among agents and conform to traffic rules with a semantic map.
arXiv Detail & Related papers (2021-03-30T11:53:12Z) - Haar Wavelet based Block Autoregressive Flows for Trajectories [129.37479472754083]
Prediction of trajectories such as that of pedestrians is crucial to the performance of autonomous agents.
We introduce a novel Haar wavelet based block autoregressive model leveraging split couplings.
We illustrate the advantages of our approach for generating diverse and accurate trajectories on two real-world datasets.
arXiv Detail & Related papers (2020-09-21T13:57:10Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - Flow descriptors of human mobility networks [0.0]
We propose a systematic analysis to characterize mobility network flows and topology and assess their impact into individual traces.
This framework is suitable to assess urban planning, optimize transportation, measure the impact of external events and conditions, monitor internal dynamics and profile users according to their movement patterns.
arXiv Detail & Related papers (2020-03-16T15:27:00Z) - TraLFM: Latent Factor Modeling of Traffic Trajectory Data [16.010576606023417]
We propose a novel generative model called TraLFM to mine human mobility patterns underlying traffic trajectories.
TraLFM is based on three key observations: (1) human mobility patterns are reflected by the sequences of locations in the trajectories; (2) human mobility patterns vary with people; and (3) human mobility patterns tend to be cyclical and change over time.
arXiv Detail & Related papers (2020-03-16T04:41:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.