論文の概要: SememeASR: Boosting Performance of End-to-End Speech Recognition against
Domain and Long-Tailed Data Shift with Sememe Semantic Knowledge
- arxiv url: http://arxiv.org/abs/2309.01437v1
- Date: Mon, 4 Sep 2023 08:35:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 19:22:21.632163
- Title: SememeASR: Boosting Performance of End-to-End Speech Recognition against
Domain and Long-Tailed Data Shift with Sememe Semantic Knowledge
- Title(参考訳): SememeASR:Sememe Semantic Knowledgeを用いたドメインと長期データシフトに対するエンドツーエンド音声認識の性能向上
- Authors: Jiaxu Zhu, Changhe Song, Zhiyong Wu, Helen Meng
- Abstract要約: セメムに基づくセマンティック知識情報を音声認識に導入する。
実験の結果,セム情報により音声認識の有効性が向上することが示された。
さらに,本実験により,セメム知識が長期データ認識を改善することが確認された。
- 参考スコア(独自算出の注目度): 58.979490858061745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, excellent progress has been made in speech recognition. However,
pure data-driven approaches have struggled to solve the problem in
domain-mismatch and long-tailed data. Considering that knowledge-driven
approaches can help data-driven approaches alleviate their flaws, we introduce
sememe-based semantic knowledge information to speech recognition (SememeASR).
Sememe, according to the linguistic definition, is the minimum semantic unit in
a language and is able to represent the implicit semantic information behind
each word very well. Our experiments show that the introduction of sememe
information can improve the effectiveness of speech recognition. In addition,
our further experiments show that sememe knowledge can improve the model's
recognition of long-tailed data and enhance the model's domain generalization
ability.
- Abstract(参考訳): 近年,音声認識において優れた進歩を遂げている。
しかし、純粋なデータ駆動アプローチは、ドメインミスマッチとロングテールデータの問題を解決するのに苦労しています。
知識駆動アプローチがデータ駆動アプローチの欠点を軽減することを考えると,セメムに基づく意味知識情報を音声認識(SememeASR)に導入する。
言語定義によれば、Sememeは言語における最小の意味単位であり、各単語の背後にある暗黙的な意味情報を非常によく表現することができる。
本実験では,セメム情報の導入により音声認識の有効性が向上することを示す。
さらに,sememe知識は,ロングテールデータに対するモデルの認識を改善し,モデルのドメイン一般化能力を高めることができることを示した。
関連論文リスト
- Contrastive Augmentation: An Unsupervised Learning Approach for Keyword Spotting in Speech Technology [4.080686348274667]
教師なしコントラスト学習と拡張一意的手法を組み合わせた新しい手法を提案する。
我々の方法では、ニューラルネットワークがラベルのないデータセットでトレーニングすることができ、下流タスクのパフォーマンスが向上する可能性がある。
本稿では,ボトルネック層の特徴と音声再構成情報との類似性を利用した音声強化に基づく教師なし学習手法を提案する。
論文 参考訳(メタデータ) (2024-08-31T05:40:37Z) - Exploiting the Semantic Knowledge of Pre-trained Text-Encoders for Continual Learning [70.64617500380287]
継続的な学習は、モデルが学習した知識を維持しながら、新しいデータから学習することを可能にする。
画像のラベル情報で利用できるセマンティック知識は、以前に取得したセマンティッククラスの知識と関連する重要なセマンティック情報を提供する。
テキスト埋め込みを用いて意味的類似性を把握し,タスク内およびタスク間のセマンティックガイダンスの統合を提案する。
論文 参考訳(メタデータ) (2024-08-02T07:51:44Z) - Enhancing Context Through Contrast [0.4068270792140993]
本稿では,ニューラルマシン翻訳の性能向上のための新しいコンテキスト拡張ステップを提案する。
他のアプローチとは異なり、明示的にデータを拡張するのではなく、言語を暗黙的な拡張と見なす。
本手法は, 組込みをゼロから学習せず, 事前学習した組込みに一般化することができる。
論文 参考訳(メタデータ) (2024-01-06T22:13:51Z) - Disentangling Learnable and Memorizable Data via Contrastive Learning
for Semantic Communications [81.10703519117465]
セマンティック・レディにするために、ソースデータをアンタングルする新しい機械推論フレームワークが提案されている。
特に、データ上でインスタンスとクラスタの識別を行う新しいコントラスト学習フレームワークが提案されている。
信頼度の高い深いセマンティッククラスタは、学習可能でセマンティックリッチなデータだと考えられている。
シミュレーションの結果は, セマンティック・インパクトとミニマリズムの観点から, コントラスト学習アプローチの優位性を示した。
論文 参考訳(メタデータ) (2022-12-18T12:00:12Z) - Joint Language Semantic and Structure Embedding for Knowledge Graph
Completion [66.15933600765835]
本稿では,知識三重項の自然言語記述と構造情報とを共同で組み込むことを提案する。
本手法は,学習済み言語モデルを微調整することで,完了作業のための知識グラフを埋め込む。
各種知識グラフベンチマーク実験により,本手法の最先端性能を実証した。
論文 参考訳(メタデータ) (2022-09-19T02:41:02Z) - Self-Supervised Speech Representation Learning: A Review [105.1545308184483]
自己教師付き表現学習法は、幅広いタスクやドメインに利益をもたらす単一の普遍的モデルを約束する。
音声表現学習は、生成的、コントラスト的、予測的という3つの主要なカテゴリで同様の進歩を経験している。
本稿では,自己指導型音声表現学習のアプローチと,他の研究領域との関係について述べる。
論文 参考訳(メタデータ) (2022-05-21T16:52:57Z) - On the Use of External Data for Spoken Named Entity Recognition [40.93448412171246]
近年の自己教師型音声表現の進歩により,ラベル付きデータに制限のある学習モデルを考えることが可能になった。
自己学習、知識蒸留、トランスファーラーニングなど、さまざまなアプローチを採用し、エンドツーエンドモデルとパイプラインアプローチの両方に適用性を検討する。
論文 参考訳(メタデータ) (2021-12-14T18:49:26Z) - Semantic TrueLearn: Using Semantic Knowledge Graphs in Recommendation
Systems [22.387120578306277]
本研究は,意味的関連性を取り入れた国家認識型教育レコメンデーションシステムの構築を目指している。
本稿では,ウィキペディアリンクグラフを用いた学習リソースにおける知識コンポーネント間の意味的関連性を利用した,新しい学習モデルを提案する。
大規模データセットを用いた実験により,TrueLearnアルゴリズムの新たなセマンティックバージョンが,予測性能の面で統計的に有意な改善を実現していることが示された。
論文 参考訳(メタデータ) (2021-12-08T16:23:27Z) - Named Entity Recognition for Social Media Texts with Semantic
Augmentation [70.44281443975554]
名前付きエンティティ認識のための既存のアプローチは、短いテキストと非公式テキストで実行される場合、データ空間の問題に悩まされる。
そこで我々は,NER によるソーシャルメディアテキストに対するニューラルベースアプローチを提案し,ローカルテキストと拡張セマンティクスの両方を考慮に入れた。
論文 参考訳(メタデータ) (2020-10-29T10:06:46Z) - On the Effects of Knowledge-Augmented Data in Word Embeddings [0.6749750044497732]
単語埋め込み学習のためのデータ拡張による言語知識注入のための新しい手法を提案する。
提案手法は,学習した埋め込みの本質的な特性を向上すると同時に,下流テキスト分類タスクにおける結果の大幅な変更は行わない。
論文 参考訳(メタデータ) (2020-10-05T02:14:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。