Defect Detection in Synthetic Fibre Ropes using Detectron2 Framework
- URL: http://arxiv.org/abs/2309.01469v2
- Date: Fri, 28 Jun 2024 08:13:48 GMT
- Title: Defect Detection in Synthetic Fibre Ropes using Detectron2 Framework
- Authors: Anju Rani, Daniel O. Arroyo, Petar Durdevic,
- Abstract summary: Deep learning models in condition monitoring (CM) applications offer a simpler and more effective approach for defect detection in synthetic fibre ropes (SFRs)
This study aims to develop an automated and efficient method for detecting defects in SFRs, enhancing the inspection process, and ensuring the safety of the fibre ropes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fibre ropes with the latest technology have emerged as an appealing alternative to steel ropes for offshore industries due to their lightweight and high tensile strength. At the same time, frequent inspection of these ropes is essential to ensure the proper functioning and safety of the entire system. The development of deep learning (DL) models in condition monitoring (CM) applications offers a simpler and more effective approach for defect detection in synthetic fibre ropes (SFRs). The present paper investigates the performance of Detectron2, a state-of-the-art library for defect detection and instance segmentation. Detectron2 with Mask R-CNN architecture is used for segmenting defects in SFRs. Mask R-CNN with various backbone configurations has been trained and tested on an experimentally obtained dataset comprising 1,803 high-dimensional images containing seven damage classes (placking high, placking medium, placking low, compression, core out, chafing, and normal respectively) for SFRs. By leveraging the capabilities of Detectron2, this study aims to develop an automated and efficient method for detecting defects in SFRs, enhancing the inspection process, and ensuring the safety of the fibre ropes.
Related papers
- Comparing Unidirectional, Bidirectional, and Word2vec Models for
Discovering Vulnerabilities in Compiled Lifted Code [5.4141465747474475]
This research investigates the application of unidirectional transformer-based embeddings, specifically GPT-2.
Our study reveals that embeddings from GPT-2 model significantly outperform those from bidirectional models of BERT and RoBERTa.
arXiv Detail & Related papers (2024-09-26T03:48:47Z) - Joint Attention-Guided Feature Fusion Network for Saliency Detection of
Surface Defects [69.39099029406248]
We propose a joint attention-guided feature fusion network (JAFFNet) for saliency detection of surface defects based on the encoder-decoder network.
JAFFNet mainly incorporates a joint attention-guided feature fusion (JAFF) module into decoding stages to adaptively fuse low-level and high-level features.
Experiments conducted on SD-saliency-900, Magnetic tile, and DAGM 2007 indicate that our method achieves promising performance in comparison with other state-of-the-art methods.
arXiv Detail & Related papers (2024-02-05T08:10:16Z) - Imagery Dataset for Condition Monitoring of Synthetic Fibre Ropes [0.0]
This dataset comprises a total of 6,942 raw images representing both normal and defective SFRs.
The dataset serves as a resource to support computer vision applications, including object detection, classification, and segmentation.
The aim of generating this dataset is to assist in the development of automated defect detection systems.
arXiv Detail & Related papers (2023-09-29T08:42:44Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Efficient Decoder-free Object Detection with Transformers [75.00499377197475]
Vision transformers (ViTs) are changing the landscape of object detection approaches.
We propose a decoder-free fully transformer-based (DFFT) object detector.
DFFT_SMALL achieves high efficiency in both training and inference stages.
arXiv Detail & Related papers (2022-06-14T13:22:19Z) - Engineering deep learning methods on automatic detection of damage in
infrastructure due to extreme events [0.38233569758620045]
This paper presents a few experimental studies for automated Structural Damage Detection (SDD) in extreme events using deep learning methods.
In the first study, a 152-layer Residual network (ResNet) is utilized to classify multiple classes in eight SDD tasks.
The results show that the accuracy of damage detection is significantly improved compared to only using a segmentation network.
arXiv Detail & Related papers (2022-05-01T19:55:56Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z) - A DCNN-based Arbitrarily-Oriented Object Detector for Quality Control
and Inspection Application [10.076629346147639]
A lightweight neural network is exploited to achieve oriented detection results using a regression method.
The first stage of the proposed method is capable of detecting the small targets considered in the two scenarios.
In the second stage, despite the simplicity, it is efficient to detect elongated targets while maintaining high running efficiency.
arXiv Detail & Related papers (2021-01-19T00:23:27Z) - End-to-end Deep Learning Methods for Automated Damage Detection in
Extreme Events at Various Scales [0.4297070083645048]
Mask R-CNN is proposed and tested for automatic detection of cracks on structures or their components that may be damaged during extreme events, such as earth-quakes.
We curated a new dataset with 2,021 labeled images for training and validation and aimed to find end-to-end deep neural networks for crack detection in the field.
arXiv Detail & Related papers (2020-11-05T21:21:19Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.