Evolution of coherent waves driving a single artificial atom
- URL: http://arxiv.org/abs/2309.01563v2
- Date: Wed, 6 Sep 2023 05:50:01 GMT
- Title: Evolution of coherent waves driving a single artificial atom
- Authors: A. V. Vasenin, Sh. V. Kadyrmetov, A. N. Bolgar, A. Yu. Dmitriev, O. V.
Astafiev
- Abstract summary: An electromagnetic wave propagating through a waveguide with a strongly superconducting artificial two-level atom exhibits an evolving superposition with the atom.
The Rabi oscillations in the atom result from a single excitation-relaxation, corresponding to photon absorption and stimulated emission from/to the field.
We demonstrate that the time evolution of the propagating fields, due to interaction, encapsulates all information about the atom.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An electromagnetic wave propagating through a waveguide with a strongly
coupled superconducting artificial two-level atom exhibits an evolving
superposition with the atom. The Rabi oscillations in the atom result from a
single excitation-relaxation, corresponding to photon absorption and stimulated
emission from/to the field. In this study, we investigate the time-dependent
behavior of the transmitted field and extract its spectra. The scattered fields
are described using input-output theory. We demonstrate that the time evolution
of the propagating fields, due to interaction, encapsulates all information
about the atom. Additionally, we deduce the dynamics of the incoherent
radiation component from the measured first-order correlation function of the
field.
Related papers
- Correlated relaxation and emerging entanglement in arrays of $Λ$-type atoms [83.88591755871734]
We show that the atomic entanglement emerges in the course of relaxation and persists in the final steady state of the system.
Our findings open a new way to engineer dissipation-induced entanglement.
arXiv Detail & Related papers (2024-11-11T08:39:32Z) - Dynamics and Resonance Fluorescence from a Superconducting Artificial Atom Doubly Driven by Quantized and Classical Fields [11.961708412157757]
Experimental demonstration of resonance fluorescence in a two-level superconducting artificial atom under two driving fields coupled to a detuned cavity.
The device consists of a transmon qubit strongly coupled to a one-dimensional transmission line and a coplanar waveguide resonator.
arXiv Detail & Related papers (2024-03-17T08:48:30Z) - Super- and subradiant dynamics of quantum emitters mediated by atomic
matter waves [0.0]
We explore cooperative dynamics of quantum emitters in an optical lattice that interact by radiating atomic matter waves.
We demonstrate directional super- and subradiance from a superfluid phase with tunable radiative phase lags.
We observe a coupling to collective bound states with radiation trapped at and between the emitters.
arXiv Detail & Related papers (2023-11-16T00:37:06Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Ultrastrong waveguide QED with giant atoms [0.0]
We extend the theory of giant atoms to deal with the ultrastrong coupling regime.
We show that virtual photons dressing the ground state are non-exponentially localized around the contact points but decay as a power-law.
arXiv Detail & Related papers (2022-05-16T18:01:13Z) - Light propagation and atom interferometry in gravity and dilaton fields [58.80169804428422]
We study the modified propagation of light used to manipulate atoms in light-pulse atom interferometers.
Their interference signal is dominated by the matter's coupling to gravity and the dilaton.
We discuss effects from light propagation and the dilaton on different atom-interferometric setups.
arXiv Detail & Related papers (2022-01-18T15:26:19Z) - Motion induced excitation and radiation from an atom facing a mirror [0.0]
We study quantum dissipative effects due to the non-relativistic, bounded, accelerated motion of a single neutral atom.
We compute the spontaneous emission rate of an oscillating atom that is initially in an excited state.
arXiv Detail & Related papers (2022-01-04T20:31:19Z) - Dimerization of many-body subradiant states in waveguide quantum
electrodynamics [137.6408511310322]
We study theoretically subradiant states in the array of atoms coupled to photons propagating in a one-dimensional waveguide.
We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization.
We reveal the breakdown of fermionized subradiant states with increase of $f$ with emergence of short-ranged dimerized antiferromagnetic correlations.
arXiv Detail & Related papers (2021-06-17T12:17:04Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Non-exponential decay of a collective excitation in an atomic ensemble
coupled to a one-dimensional waveguide [0.0]
We study the dynamics of a single excitation coherently shared amongst an ensemble of atoms and coupled to a one-dimensional wave guide.
The coupling between the matter and the light field gives rise to collective phenomena such as superradiant states.
arXiv Detail & Related papers (2020-06-26T13:26:35Z) - Gravitational waves affect vacuum entanglement [68.8204255655161]
The entanglement harvesting protocol is an operational way to probe vacuum entanglement.
Using this protocol, it is demonstrated that while the transition probability of an individual atom is unaffected by the presence of a gravitational wave, the entanglement harvested by two atoms depends sensitively on the frequency of the gravitational wave.
This suggests that the entanglement signature left by a gravitational wave may be useful in characterizing its properties, and potentially useful in exploring the gravitational-wave memory effect and gravitational-wave induced decoherence.
arXiv Detail & Related papers (2020-06-19T18:01:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.