Non-Markovian dynamics with $Λ$-type atomic systems in a single end photonic waveguide
- URL: http://arxiv.org/abs/2503.15216v1
- Date: Wed, 19 Mar 2025 13:55:03 GMT
- Title: Non-Markovian dynamics with $Λ$-type atomic systems in a single end photonic waveguide
- Authors: Jun-Cong Zheng, Xiao-Wei Zheng, Xin-Lei Hei, Yi-Fan Qiao, Xiao-Yu Yao, Xue-Feng Pan, Yu-Meng Ren, Xiao-Wen Huo, Peng-Bo Li,
- Abstract summary: We investigate the non-Markovian dynamical evolution of a $da$-Lamb-type atom interacting with a semi-infinite one-dimensional photonic waveguide.<n>We show that, under suitable conditions, the instantaneous and retarded decay rates reach equilibrium, leading to the formation of an atom-photon bound state.<n>We extend the model to a two-atom system and examine the disentanglement dynamics of the two spatially separated atoms.
- Score: 3.3876783017014214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we investigate the non-Markovian dynamical evolution of a ${\Lambda}$-type atom interacting with a semi-infinite one-dimensional photonic waveguide via two atomic transitions. The waveguide terminates at a perfect mirror, which reflects the light and introduces boundary effects. We derive exact analytical expressions and show that, under suitable conditions, the instantaneous and retarded decay rates reach equilibrium, leading to the formation of an atom-photon bound state that suppresses dissipation. Consequently, the atom retains a long-lived population in the asymptotic time limit. Furthermore, we analyze the output field intensity and demonstrate that blocking one of the coupling channels forces the atomic system to emit photons of a single frequency. Finally, we extend the model to a two-atom system and examine the disentanglement dynamics of the two spatially separated atoms. These findings elucidate the dynamic process of spontaneous emission involving multi-frequency photons from multi-level atoms and provide insights into the complex interference between different decay pathways.
Related papers
- Correlated relaxation and emerging entanglement in arrays of $Λ$-type atoms [83.88591755871734]
We show that the atomic entanglement emerges in the course of relaxation and persists in the final steady state of the system.
Our findings open a new way to engineer dissipation-induced entanglement.
arXiv Detail & Related papers (2024-11-11T08:39:32Z) - Adding Photonic Entanglement to Superradiance by Using Multilevel Atoms [0.0]
photonic states emitted by ensembles of multilevel atoms via a superradiance process exhibit entanglement in the modal degree of freedom.<n>We show here that this collective emission process is a favorable candidate for a fast, bright and deterministic source of entangled photons.
arXiv Detail & Related papers (2024-10-17T15:19:54Z) - Non-Markovian dynamics with a giant atom coupled to a semi-infinite photonic waveguide [0.0]
We study the non-Markovian dynamics of a two-level giant atom interacting with a one-dimensional semi-infinite waveguide.
We find that three different types of bound states can be formed in the system.
We extend the system to a more general case involving many giant atoms coupled into a one-dimensional semi-infinite waveguide.
arXiv Detail & Related papers (2024-04-11T16:24:01Z) - Many-photon scattering and entangling in a waveguide with a
{\Lambda}-type atom [55.2480439325792]
We show that after transmission of a short few-photon pulse, the final state of the atom and all the photons is a genuine multipartite entangled state belonging to the W class.
The parameters of the input pulse are optimized to maximize the efficiency of three- and four-partite W-state production.
arXiv Detail & Related papers (2023-09-25T09:06:28Z) - Giant-Atom Effects on Population and Entanglement Dynamics of Rydberg
Atoms [2.8899691390187794]
Giant atoms are attracting interest as an emerging paradigm in the quantum optics of engineered waveguides.
We propose to realize a synthetic giant atom working in the optical regime starting from a pair of interacting Rydberg atoms.
Our findings may be relevant to quantum information processing, besides broadening the giant-atom waveguide physics with optically driven natural atoms.
arXiv Detail & Related papers (2023-04-28T09:32:04Z) - Resonance fluorescence of a chiral artificial atom [0.28675177318965034]
We demonstrate a superconducting artificial atom with strong unidirectional coupling to a microwave photonic waveguide.
Our demonstration puts forth a superconducting hardware platform for the realization of several key functionalities pursued within the paradigm of chiral quantum optics.
arXiv Detail & Related papers (2022-12-21T22:59:43Z) - Observation of superradiant bursts in a cascaded quantum system [0.0]
Dicke superradiance describes the collective radiative decay of a fully inverted ensemble of two-level atoms.
We experimentally investigate this effect for a chiral, i.e.,direction-dependent light--matter coupling.
Our results shed light on the collective radiative dynamics of cascaded quantum many-body systems.
arXiv Detail & Related papers (2022-11-16T14:36:10Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.