論文の概要: Object Size-Driven Design of Convolutional Neural Networks: Virtual Axle
Detection based on Raw Data
- arxiv url: http://arxiv.org/abs/2309.01574v2
- Date: Mon, 18 Dec 2023 08:32:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-20 23:10:57.600659
- Title: Object Size-Driven Design of Convolutional Neural Networks: Virtual Axle
Detection based on Raw Data
- Title(参考訳): 畳み込みニューラルネットワークのオブジェクトサイズ駆動設計:生データに基づく仮想軸検出
- Authors: Henik Riedel, Robert Steven Lorenzen and Clemens H\"ubler
- Abstract要約: 本稿では,専用軸検出装置を使わずにBWIM(Bridge Weigh-In-Motion)システムのリアルタイム適用を可能にする,軸検出のための新しいアプローチを提案する。
The proposed Virtual Axle Detector with Enhanced Receptive Field (VADER) is independent to bridge type and sensor placement。
スペクトルを入力としてではなく生データを使用することで、パラメータの数を増やすことなく、受容野を拡張できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Rising maintenance costs of ageing infrastructure necessitate innovative
monitoring techniques. This paper presents a new approach for detecting axles,
enabling real-time application of Bridge Weigh-In-Motion (BWIM) systems without
dedicated axle detectors. The proposed Virtual Axle Detector with Enhanced
Receptive Field (VADER) is independent of bridge type and sensor placement
while only using raw acceleration data as input. By using raw data instead of
spectograms as input, the receptive field can be enhanced without increasing
the number of parameters. We also introduce a novel receptive field (RF) rule
for an object-size driven design of Convolutional Neural Network (CNN)
architectures. We were able to show, that the RF rule has the potential to
bridge the gap between physical boundary conditions and deep learning model
development. Based on the RF rule, our results suggest that models using raw
data could achieve better performance than those using spectrograms, offering a
compelling reason to consider raw data as input. The proposed VADER achieves to
detect 99.9 % of axles with a spatial error of 4.13 cm using only acceleration
measurements, while cutting computational and memory costs by 99 % compared to
the state-of-the-art using spectograms.
- Abstract(参考訳): 老化インフラのメンテナンスコストの増大は、革新的な監視技術を必要とする。
本稿では,軸検出装置を使わずに橋梁重み移動システム(bwim)のリアルタイム適用を可能にする新しい軸検出手法を提案する。
拡張受容場(vader)を有する仮想軸検出器は、生加速度データのみを入力として使用しながら、ブリッジタイプやセンサ配置に依存しない。
入力としてスペクトログラムの代わりに生データを使用することで、パラメータ数を増加させることなく受容野を高めることができる。
また,畳み込みニューラルネットワーク(cnn)アーキテクチャのオブジェクトサイズ駆動設計のための新しい受容場(rf)ルールを提案する。
RF規則が物理境界条件と深層学習モデル開発の間のギャップを埋める可能性を示すことができた。
RF法則から, 生データを用いたモデルの方が, 分光器を用いたモデルよりも優れた性能が得られる可能性が示唆された。
提案するvaderは加速度測定のみを用いて空間誤差4.13 cmの軸の99.9 %を検出でき、スペクトログラムを用いた場合と比較して計算コストとメモリコストを99 %削減できる。
関連論文リスト
- Unfolding Target Detection with State Space Model [8.493729039825332]
本稿では,CFAR検出器を状態空間モデルアーキテクチャに展開することにより,信号処理とディープラーニングを組み合わせた新しい手法を提案する。
CFARパイプラインを保存し、洗練された構成をトレーニング可能なパラメータにすることで、手動パラメータチューニングなしで高い検出性能を実現する。
その結果,提案手法の顕著な性能,CFARとその変種を検出率と誤警報率で10倍に向上させることができた。
論文 参考訳(メタデータ) (2024-10-30T07:43:18Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - DT-DDNN: A Physical Layer Security Attack Detector in 5G RF Domain for
CAVs [11.15939066175832]
妨害攻撃は5Gネットワークに重大なリスクをもたらす。
本研究は, CAVネットワークにおけるジャマー検出のための, 深層学習に基づく新しい手法を提案する。
提案手法は, 余剰低妨害電力の96.4%検出率を実現する。
論文 参考訳(メタデータ) (2024-03-05T04:29:31Z) - Automotive RADAR sub-sampling via object detection networks: Leveraging
prior signal information [18.462990836437626]
自動運転技術への関心が高まり、自動車レーダーはますます注目を集めている。
本研究では,従来の環境条件の知識に基づいて,より詳細な/正確な再構築を必要とする地域を特定するための適応型レーダサブサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-21T05:32:28Z) - A deep learning approach to predict the number of k-barriers for
intrusion detection over a circular region using wireless sensor networks [3.6748639131154315]
無線センサネットワーク(WSN)は、国境地帯における侵入検知と監視の問題に対して実現可能な解決策である。
本稿では,高速な侵入検知・防止のためのkバリア数の正確な予測を行うために,完全接続型フィードフォワードニューラルネットワーク(ANN)に基づくディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-25T06:39:29Z) - Virtual Axle Detector based on Analysis of Bridge Acceleration
Measurements by Fully Convolutional Network [5.141414655148996]
本稿では,橋梁の任意の地点に加速度計を設置して軸検出を行う新しい手法を提案する。
このモデルは、連続ウェーブレット変換の形式で信号を処理するための完全な畳み込みネットワークとして実装されている。
これにより,仮想軸検出器(VAD)として機能する橋梁構造物の任意の位置において,特定の構造型に制限されることなく,加速度信号を使用することが可能である。
論文 参考訳(メタデータ) (2022-07-08T09:01:04Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
空間、時間、周波数領域にわたる無線スペクトルのモニタリングは、5Gと6G以上の通信技術において重要な特徴となる。
本稿では,空間領域全体にわたる不規則分散計測を補間するGAN(Generative Adversarial Network)機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-23T22:25:10Z) - FOVEA: Foveated Image Magnification for Autonomous Navigation [53.69803081925454]
入力キャンバスを小さく保ちながら、ある領域を弾性的に拡大する注意的アプローチを提案する。
提案手法は,高速R-CNNより高速かつ微調整の少ない検出APを高速化する。
Argoverse-HD と BDD100K の自律走行データセットでは,提案手法が標準の高速 R-CNN を超越した検出APを微調整なしで促進することを示す。
論文 参考訳(メタデータ) (2021-08-27T03:07:55Z) - Oriented R-CNN for Object Detection [61.78746189807462]
本研究では、オブジェクト指向R-CNNと呼ばれる、効果的でシンプルなオブジェクト指向オブジェクト検出フレームワークを提案する。
第1段階では,高品質な指向型提案をほぼ無償で直接生成する指向型領域提案ネットワーク(指向RPN)を提案する。
第2段階は、R-CNNヘッダーで、興味のある領域(オブジェクト指向のRoI)を精製し、認識する。
論文 参考訳(メタデータ) (2021-08-12T12:47:43Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。