論文の概要: Object-Size-Driven Design of Convolutional Neural Networks: Virtual Axle Detection based on Raw Data
- arxiv url: http://arxiv.org/abs/2309.01574v3
- Date: Wed, 4 Sep 2024 10:42:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 04:56:30.532101
- Title: Object-Size-Driven Design of Convolutional Neural Networks: Virtual Axle Detection based on Raw Data
- Title(参考訳): 畳み込みニューラルネットワークのオブジェクトサイズ駆動設計:生データに基づく仮想軸検出
- Authors: Henik Riedel, Robert Steven Lorenzen, Clemens Hübler,
- Abstract要約: 本研究は、専用軸受を列車軸受のリアルタイム検出のための新しいアプローチに置き換えることの課題に対処する。
提案したVADER(Virtual Axle Detector with Enhanced Receptive Field)は単線鉄道橋上で検証されている。
生データを入力として使用すると、最先端のスペクトログラムベースの手法がスピードとメモリ使用率の両方で99%向上する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As infrastructure ages, the need for efficient monitoring methods becomes increasingly critical. Bridge Weigh-In-Motion (BWIM) systems are crucial for cost-efficient load and thus residual service life determination of road and railway infrastructure. However, conventional BWIM systems require additional sensors for axle detection, which have to be installed in potentially inaccessible locations or in locations that interfere with bridge operation. This study addresses this challenge by replacing dedicated axle detectors with a novel approach to real-time detection of train axles using sensors arbitrarily placed on bridges. The proposed Virtual Axle Detector with Enhanced Receptive Field (VADER) has been validated on a single-track railway bridge, demonstrating that it achieves to detect 99.9% of axles with a spatial error of 3.69cm using only acceleration measurements. Using raw data as input outperforms the state-of-the-art spectrogram-based method in both speed and memory usage by 99%, making real-time application feasible for the first time. Additionally, we introduce the Maximum Receptive Field (MRF) rule, a novel approach to optimise hyperparameters of Convolutional Neural Networks (CNNs) based on the size of objects, which in this case relates to the fundamental frequency of a bridge. The MRF rule effectively narrows the hyperparameter search space, potentially replacing the need for extensive hyperparameter tuning. Since the MRF rule is theoretically applicable to all unstructured data, it could have implications for a wide range of deep learning problems from earthquake prediction to object recognition.
- Abstract(参考訳): インフラ時代が進むにつれて、効率的なモニタリング方法の必要性がますます重要になっている。
橋梁Weigh-In-Motion (BWIM) システムはコスト効率の高い負荷に不可欠である。
しかし、従来のBWIMシステムは、アクセル検出のための追加のセンサーを必要としており、アクセス不能な場所やブリッジ操作に干渉する場所に設置する必要がある。
本研究は,専用軸受を橋梁上に任意に設置したセンサを用いて列車軸受をリアルタイムに検出する手法に置き換えることにより,この問題に対処する。
単線鉄道橋において, 空間誤差3.69cmの軸の99.9%を加速度測定のみで検出できることを実証し, VADER(Virtual Axle Detector with Enhanced Receptive Field)を検証した。
生データを入力として使用すると、最先端のスペクトログラムベースの手法をスピードとメモリ使用率の両方で99%向上し、初めてリアルタイムアプリケーションを実現することができる。
さらに、オブジェクトのサイズに基づいて畳み込みニューラルネットワーク(CNN)のハイパーパラメータを最適化する新しいアプローチである最大受容場(MRF)ルールを導入する。
MRF規則は、ハイパーパラメーター探索空間を効果的に制限し、広範なハイパーパラメーターチューニングの必要性を置き換える可能性がある。
MRF規則は理論的にはすべての非構造データに適用できるため、地震予知から物体認識まで幅広い深層学習問題に影響を及ぼす可能性がある。
関連論文リスト
- SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - UnLoc: A Universal Localization Method for Autonomous Vehicles using
LiDAR, Radar and/or Camera Input [51.150605800173366]
UnLocは、全ての気象条件におけるマルチセンサー入力によるローカライズのための、新しい統一型ニューラルネットワークアプローチである。
本手法は,Oxford Radar RobotCar,Apollo SouthBay,Perth-WAの各データセットで広く評価されている。
論文 参考訳(メタデータ) (2023-07-03T04:10:55Z) - RadarGNN: Transformation Invariant Graph Neural Network for Radar-based
Perception [0.0]
点自体の情報だけでなく,それらの関係も利用する新しいグラフニューラルネットワークが提案されている。
このモデルは、グラフの端に埋め込まれたポイント特徴とポイントペア特徴の両方を考慮するように設計されている。
RadarGNNモデルは、RadarScenesデータセットで以前のすべてのメソッドより優れています。
論文 参考訳(メタデータ) (2023-04-13T13:57:21Z) - Radar Image Reconstruction from Raw ADC Data using Parametric
Variational Autoencoder with Domain Adaptation [0.0]
本研究では,パラメータ制約付き変分オートエンコーダを提案し,レンジ角画像上でクラスタ化および局所化されたターゲット検出を生成する。
実際のレーダデータを用いて可能なすべてのシナリオにおいて,提案するニューラルネットワークをトレーニングする問題を回避すべく,ドメイン適応戦略を提案する。
論文 参考訳(メタデータ) (2022-05-30T16:17:36Z) - FOVEA: Foveated Image Magnification for Autonomous Navigation [53.69803081925454]
入力キャンバスを小さく保ちながら、ある領域を弾性的に拡大する注意的アプローチを提案する。
提案手法は,高速R-CNNより高速かつ微調整の少ない検出APを高速化する。
Argoverse-HD と BDD100K の自律走行データセットでは,提案手法が標準の高速 R-CNN を超越した検出APを微調整なしで促進することを示す。
論文 参考訳(メタデータ) (2021-08-27T03:07:55Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
本稿では,分類に基づく比較的研究の少ない方法論について検討する。
我々は2つの側面でフロンティアを推し進めるための新しい手法を提案する。
航空画像のための大規模公開データセットの実験と視覚解析は,我々のアプローチの有効性を示している。
論文 参考訳(メタデータ) (2020-11-19T05:42:02Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Semi-supervised Grasp Detection by Representation Learning in a Vector
Quantized Latent Space [1.3048920509133808]
本稿では,半教師付き学習に基づく把握検出手法を提案する。
我々の知る限りでは、変分オートエンコーダ(VAE)がロボットグリップ検出の分野に応用されたのはこれが初めてである。
このモデルでは、未ラベル画像を使用しない既存の手法に比べて、グリップを改善するために大幅に性能が向上する。
論文 参考訳(メタデータ) (2020-01-23T12:47:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。