論文の概要: Revealing the True Cost of Local Privacy: An Auditing Perspective
- arxiv url: http://arxiv.org/abs/2309.01597v2
- Date: Mon, 4 Dec 2023 10:42:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 23:19:21.985839
- Title: Revealing the True Cost of Local Privacy: An Auditing Perspective
- Title(参考訳): ローカルプライバシの真のコストを明らかにする - 監査の視点から
- Authors: Héber H. Arcolezi, Sébastien Gambs,
- Abstract要約: 本稿では,ローカルな差分秘密機構のプライバシー損失を実証的に推定する LDP-Auditor フレームワークについて紹介する。
我々は、異なるエンコーディングや摂動機能の影響など、プライバシー監査に影響を与える要因を幅広く検討する。
LDP-Auditorフレームワークは,現在最先端のLPP Pythonパッケージにバグが発見されている。
- 参考スコア(独自算出の注目度): 4.5282933786221395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While the existing literature on Differential Privacy (DP) auditing predominantly focuses on the centralized model (e.g., in auditing the DP-SGD algorithm), we advocate for extending this approach to audit Local DP (LDP). To achieve this, we introduce the LDP-Auditor framework for empirically estimating the privacy loss of locally differentially-private mechanisms. This approach leverages recent advances in designing privacy attacks against LDP frequency estimation protocols. More precisely, through the analysis of eight state-of-the-art LDP protocols we extensively explore the factors influencing the privacy audit, such as the impact of different encoding and perturbation functions. Additionally, we investigate the influence of the domain size and the theoretical privacy loss parameter $\epsilon$ on local privacy estimation. In-depth case studies are also conducted to explore specific aspects of LDP auditing, including distinguishability attacks on LDP protocols for longitudinal studies and multidimensional data. Finally, we present a notable achievement of our LDP-Auditor framework, which is the discovery of a bug in a state-of-the-art LDP Python package. Overall, our LDP-Auditor framework as well as our study offer valuable insights into the sources of randomness and information loss in LDP protocols. These contributions collectively provide a realistic understanding of the local privacy loss, which can help practitioners in selecting the LDP mechanism and privacy parameters that best align with their specific requirements.
- Abstract(参考訳): 従来のDP監査は,集中型モデル(例えば,DP-SGDアルゴリズムの監査)に主眼を置いているが,我々は,この手法をローカルDP(LDP)監査に拡張することを提唱している。
そこで我々は,ローカルな差分的メカニズムのプライバシ損失を実証的に推定する LDP-Auditor フレームワークを提案する。
このアプローチは、LDP周波数推定プロトコルに対するプライバシー攻撃の設計における最近の進歩を活用する。
より正確には、最先端の8つのLPPプロトコルの分析を通じて、異なるエンコーディングや摂動関数の影響など、プライバシー監査に影響を与える要因を広範囲に調査する。
さらに、ドメインサイズと理論的プライバシ損失パラメータ$\epsilon$が局所的なプライバシ推定に与える影響について検討する。
また, 長期研究用LDPプロトコルに対する識別可能性攻撃や多次元データなど, LDP監査の具体的な側面を明らかにするために, 詳細なケーススタディも実施されている。
最後に,現在最先端の LDP Python パッケージにバグが発見されている LDP-Auditor フレームワークの顕著な成果を示す。
LDPプロトコルにおけるランダム性や情報損失の源泉について,我々のLDP-Auditorフレームワークおよび本研究は,総合的に貴重な知見を提供する。
これらのコントリビューションは、局所的なプライバシ損失の現実的な理解を提供するもので、実践者がそれぞれの要求に最も適した LDP メカニズムとプライバシパラメータを選択するのに役立ちます。
関連論文リスト
- Enhancing Feature-Specific Data Protection via Bayesian Coordinate Differential Privacy [55.357715095623554]
ローカル微分プライバシー(LDP)は、ユーザーが外部の関係者を信頼することなく、強力なプライバシー保証を提供する。
本稿では,ベイジアン・フレームワークであるベイジアン・コーディネート・ディファレンシャル・プライバシ(BCDP)を提案する。
論文 参考訳(メタデータ) (2024-10-24T03:39:55Z) - Convergent Differential Privacy Analysis for General Federated Learning: the $f$-DP Perspective [57.35402286842029]
フェデレートラーニング(Federated Learning, FL)は、ローカルプライバシを重視した効率的な協調トレーニングパラダイムである。
ディファレンシャルプライバシ(DP)は、私的保護の信頼性を捕捉し、保証するための古典的なアプローチである。
論文 参考訳(メタデータ) (2024-08-28T08:22:21Z) - On the Robustness of LDP Protocols for Numerical Attributes under Data Poisoning Attacks [17.351593328097977]
ローカルディファレンシャルプライバシ(LDP)プロトコルは、データ中毒攻撃に対して脆弱である。
この脆弱性は、敵対的環境におけるLDPの堅牢性と信頼性に関する懸念を引き起こす。
論文 参考訳(メタデータ) (2024-03-28T15:43:38Z) - Connect the Dots: Tighter Discrete Approximations of Privacy Loss
Distributions [49.726408540784334]
PLDベースの会計の鍵となる問題は、特定の個別サポートに対してPLDと(潜在的に連続的な)PLDをどのように近似するかである。
悲観的推定はすべての悲観的推定の中で最良であることを示す。
論文 参考訳(メタデータ) (2022-07-10T04:25:02Z) - Differentially Private Regret Minimization in Episodic Markov Decision
Processes [6.396288020763144]
差分プライバシー(DP)制約下における有限地平線表型マルコフ決定過程(MDP)の後悔について検討する。
これは、実世界の逐次意思決定問題における強化学習(RL)の広範な応用が動機となっている。
論文 参考訳(メタデータ) (2021-12-20T15:12:23Z) - Privacy Amplification via Shuffling for Linear Contextual Bandits [51.94904361874446]
ディファレンシャルプライバシ(DP)を用いた文脈線形バンディット問題について検討する。
プライバシのシャッフルモデルを利用して,JDP と LDP のプライバシ/ユーティリティトレードオフを実現することができることを示す。
以上の結果から,ローカルプライバシを保ちながらシャッフルモデルを活用することで,JDPとDPのトレードオフを得ることが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-12-11T15:23:28Z) - Locally Differentially Private Bayesian Inference [23.882144188177275]
ローカルディファレンシャルプライバシ(LDP)は、アグリゲータが信頼できないいくつかのシナリオにおいて、プライバシを保存するデータ収集の選択手法として登場した。
ベイジアン推論は,LDPの下でのプライバシに付加されるノイズを考慮し,ノイズを考慮した確率的モデリングフレームワークを提供する。
論文 参考訳(メタデータ) (2021-10-27T13:36:43Z) - Partial sensitivity analysis in differential privacy [58.730520380312676]
それぞれの入力特徴が個人のプライバシ損失に与える影響について検討する。
プライベートデータベース上でのクエリに対する我々のアプローチを実験的に評価する。
また、合成データにおけるニューラルネットワークトレーニングの文脈における知見についても検討する。
論文 参考訳(メタデータ) (2021-09-22T08:29:16Z) - Local Differential Privacy for Regret Minimization in Reinforcement
Learning [33.679678503441565]
有限水平マルコフ決定過程(MDP)の文脈におけるプライバシーの研究
ローカルディファレンシャルプライバシ(LDP)フレームワークを活用することで、RLのプライバシの概念を定式化する。
本稿では,$varepsilon$-LDP要求を満たす楽観的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-15T14:13:26Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。