Classical stochastic approach to quantum mechanics and quantum
thermodynamics
- URL: http://arxiv.org/abs/2309.01851v1
- Date: Mon, 4 Sep 2023 22:47:22 GMT
- Title: Classical stochastic approach to quantum mechanics and quantum
thermodynamics
- Authors: Mario J. de Olliveira
- Abstract summary: We derive the equations of quantum mechanics and quantum thermodynamics from the assumption that a quantum system can be described by an underlying classical system of particles.
Each component $phi_j$ of the wave vector is understood as a complex variable whose real and imaginary parts are proportional to the coordinate and momentum associated to a degree of freedom of the underlying classical system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We derive the equations of quantum mechanics and quantum thermodynamics from
the assumption that a quantum system can be described by an underlying
classical system of particles. Each component $\phi_j$ of the wave vector is
understood as a stochastic complex variable whose real and imaginary parts are
proportional to the coordinate and momentum associated to a degree of freedom
of the underlying classical system. From the classical stochastic equations of
motion, we derive a general equation for the covariance matrix of the wave
vector which turns out to be of the Lindblad type. When the noise changes only
the phase of $\phi_j$, the Schr\"odinger and the quantum Liouville equation are
obtained. The component $\psi_j$ of the wave vector obeying the Schr\"odinger
equation is related to stochastic wave vector by
$|\psi_j|^2=\langle|\phi_j|^2\rangle$.
Related papers
- Self-consistency, relativism and many-particle system [0.0]
Interrelation between concepts of self-consistency, relativism and many-particle systems is considered.
Paper shows that quantum systems with a time independent function of quasi-density probability in phase space are not capable to emit electromagnetic radiation.
arXiv Detail & Related papers (2024-04-21T08:38:40Z) - A dynamic programming interpretation of quantum mechanics [0.0]
We introduce a transformation of the quantum phase $S'=S+frachbar2logrho$, which converts the deterministic equations of quantum mechanics into the Lagrangian reference frame of particles.
We show that the quantum potential can be removed from the transformed quantum Hamilton-Jacobi equations if they are solved as Hamilton-Jacobi-Bellman equations.
arXiv Detail & Related papers (2024-01-08T18:43:40Z) - Classical stochastic representation of quantum mechanics [0.0]
We show that the dynamics of a quantum system can be represented by the dynamics of an underlying classical systems obeying the Hamilton equations of motion.
The probabilistic character of quantum mechanics is devised by treating the wave function as a variable.
arXiv Detail & Related papers (2023-07-31T21:02:43Z) - Derivation of the Schr\"odinger equation from classical stochastic
dynamics [0.0]
The wave function $phi$ is assumed to be a complex time dependent random variable.
The Schr"odinger equation follows from the Liouville equation.
arXiv Detail & Related papers (2023-07-12T21:24:54Z) - Double-scale theory [77.34726150561087]
We present a new interpretation of quantum mechanics, called the double-scale theory.
It is based on the simultaneous existence of two wave functions in the laboratory reference frame.
The external wave function corresponds to a field that pilots the center-of-mass of the quantum system.
The internal wave function corresponds to the interpretation proposed by Edwin Schr"odinger.
arXiv Detail & Related papers (2023-05-29T14:28:31Z) - Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Classical and Quantum Brownian Motion [0.0]
In quantum mechanics electrons and other point particles are no waves and the chapter of quantum mechanics originated for the force carriers.
A new projector operator is proposed for the collapse of the wave function of a quantum particle moving in a classical environment.
Considering the Brownian dynamics in the frames of the Bohmian mechanics, the density functional Bohm-Langevin equation is proposed.
arXiv Detail & Related papers (2021-05-12T13:24:39Z) - Quantum dynamics and relaxation in comb turbulent diffusion [91.3755431537592]
Continuous time quantum walks in the form of quantum counterparts of turbulent diffusion in comb geometry are considered.
Operators of the form $hatcal H=hatA+ihatB$ are described.
Rigorous analytical analysis is performed for both wave and Green's functions.
arXiv Detail & Related papers (2020-10-13T15:50:49Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.