Optimal Zero-Shot Detector for Multi-Armed Attacks
- URL: http://arxiv.org/abs/2402.15808v2
- Date: Tue, 27 Feb 2024 20:08:16 GMT
- Title: Optimal Zero-Shot Detector for Multi-Armed Attacks
- Authors: Federica Granese, Marco Romanelli, Pablo Piantanida
- Abstract summary: This paper explores a scenario in which a malicious actor employs a multi-armed attack strategy to manipulate data samples.
Our central objective is to protect the data by detecting any alterations to the input.
We derive an innovative information-theoretic defense approach that optimally aggregates the decisions made by these detectors.
- Score: 30.906457338347447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores a scenario in which a malicious actor employs a
multi-armed attack strategy to manipulate data samples, offering them various
avenues to introduce noise into the dataset. Our central objective is to
protect the data by detecting any alterations to the input. We approach this
defensive strategy with utmost caution, operating in an environment where the
defender possesses significantly less information compared to the attacker.
Specifically, the defender is unable to utilize any data samples for training a
defense model or verifying the integrity of the channel. Instead, the defender
relies exclusively on a set of pre-existing detectors readily available "off
the shelf". To tackle this challenge, we derive an innovative
information-theoretic defense approach that optimally aggregates the decisions
made by these detectors, eliminating the need for any training data. We further
explore a practical use-case scenario for empirical evaluation, where the
attacker possesses a pre-trained classifier and launches well-known adversarial
attacks against it. Our experiments highlight the effectiveness of our proposed
solution, even in scenarios that deviate from the optimal setup.
Related papers
- Detecting Adversarial Data via Perturbation Forgery [28.637963515748456]
adversarial detection aims to identify and filter out adversarial data from the data flow based on discrepancies in distribution and noise patterns between natural and adversarial data.
New attacks based on generative models with imbalanced and anisotropic noise patterns evade detection.
We propose Perturbation Forgery, which includes noise distribution perturbation, sparse mask generation, and pseudo-adversarial data production, to train an adversarial detector capable of detecting unseen gradient-based, generative-model-based, and physical adversarial attacks.
arXiv Detail & Related papers (2024-05-25T13:34:16Z) - Fortify the Guardian, Not the Treasure: Resilient Adversarial Detectors [0.0]
An adaptive attack is one where the attacker is aware of the defenses and adapts their strategy accordingly.
Our proposed method leverages adversarial training to reinforce the ability to detect attacks, without compromising clean accuracy.
Experimental evaluations on the CIFAR-10 and SVHN datasets demonstrate that our proposed algorithm significantly improves a detector's ability to accurately identify adaptive adversarial attacks.
arXiv Detail & Related papers (2024-04-18T12:13:09Z) - Confidence-driven Sampling for Backdoor Attacks [49.72680157684523]
Backdoor attacks aim to surreptitiously insert malicious triggers into DNN models, granting unauthorized control during testing scenarios.
Existing methods lack robustness against defense strategies and predominantly focus on enhancing trigger stealthiness while randomly selecting poisoned samples.
We introduce a straightforward yet highly effective sampling methodology that leverages confidence scores. Specifically, it selects samples with lower confidence scores, significantly increasing the challenge for defenders in identifying and countering these attacks.
arXiv Detail & Related papers (2023-10-08T18:57:36Z) - Toward Robust Recommendation via Real-time Vicinal Defense [32.69838472574848]
We propose a general method, Real-time Vicinal Defense (RVD), which leverages neighboring training data to fine-tune the model before making a recommendation for each user.
RVD effectively mitigates targeted poisoning attacks across various models without sacrificing accuracy.
arXiv Detail & Related papers (2023-09-29T14:30:05Z) - Adversarial Attacks Neutralization via Data Set Randomization [3.655021726150369]
Adversarial attacks on deep learning models pose a serious threat to their reliability and security.
We propose a new defense mechanism that is rooted on hyperspace projection.
We show that our solution increases the robustness of deep learning models against adversarial attacks.
arXiv Detail & Related papers (2023-06-21T10:17:55Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
In this paper, we re-examine the concept of unlearnable examples and discern that the existing robust error-minimizing noise presents an inaccurate optimization objective.
We introduce a novel optimization paradigm that yields improved protection results with reduced computational time requirements.
arXiv Detail & Related papers (2023-05-18T04:03:51Z) - Defense Against Gradient Leakage Attacks via Learning to Obscure Data [48.67836599050032]
Federated learning is considered as an effective privacy-preserving learning mechanism.
In this paper, we propose a new defense method to protect the privacy of clients' data by learning to obscure data.
arXiv Detail & Related papers (2022-06-01T21:03:28Z) - LTU Attacker for Membership Inference [23.266710407178078]
We address the problem of defending predictive models against membership inference attacks.
Both utility and privacy are evaluated with an external apparatus including an Attacker and an Evaluator.
We prove that, under certain conditions, even a "na"ive" LTU Attacker can achieve lower bounds on privacy loss with simple attack strategies.
arXiv Detail & Related papers (2022-02-04T18:06:21Z) - Improving the Adversarial Robustness for Speaker Verification by Self-Supervised Learning [95.60856995067083]
This work is among the first to perform adversarial defense for ASV without knowing the specific attack algorithms.
We propose to perform adversarial defense from two perspectives: 1) adversarial perturbation purification and 2) adversarial perturbation detection.
Experimental results show that our detection module effectively shields the ASV by detecting adversarial samples with an accuracy of around 80%.
arXiv Detail & Related papers (2021-06-01T07:10:54Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
We introduce sampling attack, a novel membership inference technique that unlike other standard membership adversaries is able to work under severe restriction of no access to scores of the victim model.
We show that a victim model that only publishes the labels is still susceptible to sampling attacks and the adversary can recover up to 100% of its performance.
For defense, we choose differential privacy in the form of gradient perturbation during the training of the victim model as well as output perturbation at prediction time.
arXiv Detail & Related papers (2020-09-01T12:54:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.