論文の概要: Dual Adversarial Alignment for Realistic Support-Query Shift Few-shot
Learning
- arxiv url: http://arxiv.org/abs/2309.02088v1
- Date: Tue, 5 Sep 2023 09:50:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 15:34:23.532834
- Title: Dual Adversarial Alignment for Realistic Support-Query Shift Few-shot
Learning
- Title(参考訳): リアリスティックなサポートクエリシフト学習のための双対アライメント
- Authors: Siyang Jiang, Rui Fang, Hsi-Wen Chen, Wei Ding, and Ming-Syan Chen
- Abstract要約: Support-Query Shift Few-shot Learningは、低次元空間に埋め込まれた学習結果に基づいて、未確認例(クエリセット)をラベル付きデータ(サポートセット)に分類することを目的としている。
本稿では,現実的なサポートクエリシフト (Realistic Support-Query Shift) という,新しい難題を提案する。
さらに,DuaL(dual adversarial alignment framework)と呼ばれる一貫した対角的特徴アライメント手法を提案し,RSQSをドメイン間バイアスとドメイン内分散の2つの側面から緩和する。
- 参考スコア(独自算出の注目度): 15.828113109152069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Support-query shift few-shot learning aims to classify unseen examples (query
set) to labeled data (support set) based on the learned embedding in a
low-dimensional space under a distribution shift between the support set and
the query set. However, in real-world scenarios the shifts are usually unknown
and varied, making it difficult to estimate in advance. Therefore, in this
paper, we propose a novel but more difficult challenge, RSQS, focusing on
Realistic Support-Query Shift few-shot learning. The key feature of RSQS is
that the individual samples in a meta-task are subjected to multiple
distribution shifts in each meta-task. In addition, we propose a unified
adversarial feature alignment method called DUal adversarial ALignment
framework (DuaL) to relieve RSQS from two aspects, i.e., inter-domain bias and
intra-domain variance. On the one hand, for the inter-domain bias, we corrupt
the original data in advance and use the synthesized perturbed inputs to train
the repairer network by minimizing distance in the feature level. On the other
hand, for intra-domain variance, we proposed a generator network to synthesize
hard, i.e., less similar, examples from the support set in a self-supervised
manner and introduce regularized optimal transportation to derive a smooth
optimal transportation plan. Lastly, a benchmark of RSQS is built with several
state-of-the-art baselines among three datasets (CIFAR100, mini-ImageNet, and
Tiered-Imagenet). Experiment results show that DuaL significantly outperforms
the state-of-the-art methods in our benchmark.
- Abstract(参考訳): サポートクエリシフト 少数ショット学習の目的は、サポートセットとクエリセットの間の分散シフトの下で、学習された低次元空間への埋め込みに基づいて、未確認例(クエリセット)をラベル付きデータ(サポートセット)に分類することである。
しかし、現実のシナリオでは、シフトは通常未知であり、変化するため、事前に見積もるのは困難である。
そこで本稿では,現実的なサポートクエリシフトによる数ショット学習に着目した,新しい難題であるRSQSを提案する。
RSQSの鍵となる特徴は、メタタスク内の個々のサンプルは、メタタスクごとに複数の分散シフトを受けることである。
さらに,DuaL(dual adversarial alignment framework)と呼ばれる一貫した対角的特徴アライメント手法を提案し,RSQSをドメイン間バイアスとドメイン内分散の2つの側面から緩和する。
一方、ドメイン間バイアスについては、予め元のデータを分解し、合成した摂動入力を用いて、特徴レベルの距離を最小化し、補修ネットワークを訓練する。
一方, ドメイン内分散のために, ハードを合成するジェネレータネットワーク, すなわち, 自己教師あり方式でサポートセットから例を合成し, 円滑な最適輸送計画の導出のために, 正規化最適輸送を導入することを提案した。
最後に、RSQSのベンチマークは、3つのデータセット(CIFAR100、mini-ImageNet、Tiered-Imagenet)のうち、最先端のベースラインで構築されている。
実験の結果,DuaLは我々のベンチマークで最先端の手法よりも優れていた。
関連論文リスト
- Progressive Multi-Level Alignments for Semi-Supervised Domain Adaptation SAR Target Recognition Using Simulated Data [3.1951121258423334]
我々は、ソースドメインインスタンスを対応するプロトタイプに近づけるために、インスタンス-プロトタイプアライメント(AIPA)戦略を開発する。
また、ソースドメインインスタンスを対応するプロトタイプに近づけるための、インスタンス-プロトタイプアライメント(AIPA)戦略も開発しています。
論文 参考訳(メタデータ) (2024-11-07T13:53:13Z) - Cross-Domain Few-Shot Learning via Adaptive Transformer Networks [16.289485655725013]
本稿では,ドメイン間数ショット学習のための適応型トランスフォーマネットワーク(ADAPTER)を提案する。
ADAPTERは2つのドメイン間で伝達可能な特徴を学習するために双方向の相互注意というアイデアに基づいて構築されている。
論文 参考訳(メタデータ) (2024-01-25T07:05:42Z) - Dual Adaptive Representation Alignment for Cross-domain Few-shot
Learning [58.837146720228226]
ベース知識から学習することで、限られたサポートサンプルを持つ新規なクエリを認識することを目的としている。
この設定の最近の進歩は、ベース知識と新しいクエリサンプルが同じドメインに分散されていることを前提としている。
本稿では,ターゲットドメインで利用可能なサンプルが極めて少ないドメイン間数ショット学習の問題に対処することを提案する。
論文 参考訳(メタデータ) (2023-06-18T09:52:16Z) - Boosting Few-shot Fine-grained Recognition with Background Suppression
and Foreground Alignment [53.401889855278704]
FS-FGR (Few-shot Fine-fine Recognition) は、限られたサンプルの助けを借りて、新しいきめ細かなカテゴリを認識することを目的としている。
本研究では,背景アクティベーション抑制 (BAS) モジュール,フォアグラウンドオブジェクトアライメント (FOA) モジュール,および局所的局所的(L2L) 類似度測定器からなる2段階の背景アライメントとフォアグラウンドアライメントフレームワークを提案する。
複数のベンチマークで行った実験により,提案手法は既存の最先端技術よりも大きなマージンで優れていることが示された。
論文 参考訳(メタデータ) (2022-10-04T07:54:40Z) - PGADA: Perturbation-Guided Adversarial Alignment for Few-shot Learning
Under the Support-Query Shift [10.730615481992515]
低次元の埋め込み空間にデータを埋め込み、未知のクエリデータを目に見えないサポートセットに分類することを目的としている。
画像中の小さな摂動が最適輸送を著しく誤解し、モデル性能を低下させることがわかった。
そこで我々はまず,摂動誘導適応(PGADA)という新たな逆データ拡張手法を提案する。
論文 参考訳(メタデータ) (2022-05-08T09:15:58Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - HSVA: Hierarchical Semantic-Visual Adaptation for Zero-Shot Learning [74.76431541169342]
ゼロショット学習(ZSL)は、目に見えないクラス認識の問題に取り組み、目に見えないクラスから目に見えないクラスに意味的な知識を移す。
本稿では,意味領域と視覚領域を協調させる新しい階層型意味視覚適応(HSVA)フレームワークを提案する。
4つのベンチマークデータセットの実験では、HSVAは従来のZSLと一般的なZSLの両方で優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-30T14:27:50Z) - Contrastive Prototype Learning with Augmented Embeddings for Few-Shot
Learning [58.2091760793799]
拡張埋め込み(CPLAE)モデルを用いた新しいコントラスト型プロトタイプ学習を提案する。
クラスプロトタイプをアンカーとして、CPLは、同じクラスのクエリサンプルを、異なるクラスのサンプルを、さらに遠くに引き出すことを目的としている。
いくつかのベンチマークによる大規模な実験により,提案したCPLAEが新たな最先端を実現することが示された。
論文 参考訳(メタデータ) (2021-01-23T13:22:44Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
このタスクの重要な課題は、ソースとターゲットドメイン間のデータ分散の相違を緩和する方法である。
本稿では,グローバルな視点とローカルな視点の両方から分布の整合性を促進できるASS(Alleviating Semantic-level Shift)を提案する。
GTA5、Cityscapes、Synthia、Cityscapesの2つのドメイン適応タスクにASSを適用します。
論文 参考訳(メタデータ) (2020-04-02T03:25:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。