論文の概要: Encoding Seasonal Climate Predictions for Demand Forecasting with
Modular Neural Network
- arxiv url: http://arxiv.org/abs/2309.02248v1
- Date: Tue, 5 Sep 2023 13:58:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 14:22:22.452372
- Title: Encoding Seasonal Climate Predictions for Demand Forecasting with
Modular Neural Network
- Title(参考訳): モジュール型ニューラルネットワークによる需要予測のための季節気候予測の符号化
- Authors: Smit Marvaniya, Jitendra Singh, Nicolas Galichet, Fred Ochieng Otieno,
Geeth De Mel, Kommy Weldemariam
- Abstract要約: 本稿では,サプライチェーン機能に対する堅牢で信頼性の高い時系列予測を提供するため,季節的気候予測を符号化する新しい枠組みを提案する。
本実験は, 季節気候予測をモデル化し, 複数の実世界のデータセットに対して約13%から17%の誤差低減を達成できることを示す。
- 参考スコア(独自算出の注目度): 0.8378605337114742
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current time-series forecasting problems use short-term weather attributes as
exogenous inputs. However, in specific time-series forecasting solutions (e.g.,
demand prediction in the supply chain), seasonal climate predictions are
crucial to improve its resilience. Representing mid to long-term seasonal
climate forecasts is challenging as seasonal climate predictions are uncertain,
and encoding spatio-temporal relationship of climate forecasts with demand is
complex.
We propose a novel modeling framework that efficiently encodes seasonal
climate predictions to provide robust and reliable time-series forecasting for
supply chain functions. The encoding framework enables effective learning of
latent representations -- be it uncertain seasonal climate prediction or other
time-series data (e.g., buyer patterns) -- via a modular neural network
architecture. Our extensive experiments indicate that learning such
representations to model seasonal climate forecast results in an error
reduction of approximately 13\% to 17\% across multiple real-world data sets
compared to existing demand forecasting methods.
- Abstract(参考訳): 現在の時系列予測問題は、短期気象特性を外因性入力として用いている。
しかし、特定の時系列予測ソリューション(サプライチェーンの需要予測など)では、季節的な気候予測がレジリエンスを改善するために不可欠である。
季節的な気候予測は不確実であり、気候予測と需要との時空間的関係を符号化することは複雑である。
本稿では,サプライチェーン機能に対する堅牢で信頼性の高い時系列予測を実現するため,季節的気候予測を効率的に符号化する新しいモデリングフレームワークを提案する。
このエンコーディングフレームワークは、モジュール型ニューラルネットワークアーキテクチャによって、季節的な気候予測や、その他の時系列データ(購入者パターンなど)といった潜在表現の効果的な学習を可能にする。
このような表現を季節気候予測モデルに学習すると、既存の需要予測手法と比較して、複数の実世界のデータセットで約13~17倍の誤差が減少することを示す。
関連論文リスト
- Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
我々は、気象時系列から表現指標を予測するために、ディープニューラルネットワークを訓練する。
このアプローチは従来のプロセスベースのモデルよりも優れています。
論文 参考訳(メタデータ) (2024-01-08T15:29:23Z) - Scaling transformer neural networks for skillful and reliable medium-range weather forecasting [23.249955524044392]
本稿では,標準変圧器バックボーンの変更を最小限に抑えつつ,気象予報の最先端性能であるStormerを紹介する。
Stormerの中核はランダムな予測目標であり、様々な時間間隔で天気のダイナミクスを予測するためにモデルを訓練する。
ウェザーベンチ2では、ストーマーは短距離から中距離の予測で競争力を発揮し、現在の手法を7日を超えて上回っている。
論文 参考訳(メタデータ) (2023-12-06T19:46:06Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
不確かさの定量化は意思決定に不可欠である。
天気予報の不確実性を表す主要なアプローチは、予測の集合を生成することです。
本稿では,これらの予測を歴史的データから学習した深部生成拡散モデルを用いてエミュレートし,計算コストを補正することを提案する。
論文 参考訳(メタデータ) (2023-06-24T22:00:06Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Addressing Deep Learning Model Uncertainty in Long-Range Climate
Forecasting with Late Fusion [2.951502707659703]
本稿では,複数のモデルからの予測を体系的に組み合わせて,融合した結果の予測誤差を低減できるレイトフュージョン手法を提案する。
また、データ正規化を実際に行わずにデータ正規化の利点を得るために、新しい非正規化層を持つネットワークアーキテクチャを提案する。
長距離2m温度予測実験の結果,30年間の気候の正常値を上回っ,モデル数の増加により精度の向上が図られた。
論文 参考訳(メタデータ) (2021-12-10T00:00:09Z) - Short-term precipitation prediction using deep learning [5.1589108738893215]
気象フィールドの1つのフレームを用いた3次元畳み込みニューラルネットワークは降水空間分布を予測することができることを示す。
このネットワークは、気象学の39年 (1980-2018) のデータと、連続した米国上空の毎日の降水に基づいて開発されている。
論文 参考訳(メタデータ) (2021-10-05T06:37:24Z) - Improving seasonal forecast using probabilistic deep learning [1.1988695717766686]
我々は,季節予測能力と予測診断力を高めるための確率論的ディープニューラルネットワークモデルを開発した。
気候シミュレーションで符号化された複雑な物理的関係を活用することで、我々のモデルは好ましい決定論的および確率論的スキルを示す。
季節変動の支配的なモードであるエルニーニョ/南部の振動が、世界の季節予測可能性をどのように調節するかについて、より決定的な答えを与える。
論文 参考訳(メタデータ) (2020-10-27T21:02:26Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。