Information Processing by Neuron Populations in the Central Nervous
System: Mathematical Structure of Data and Operations
- URL: http://arxiv.org/abs/2309.02332v2
- Date: Sat, 30 Dec 2023 21:11:44 GMT
- Title: Information Processing by Neuron Populations in the Central Nervous
System: Mathematical Structure of Data and Operations
- Authors: Martin N. P. Nilsson
- Abstract summary: In the intricate architecture of the mammalian central nervous system, neurons form populations.
These neuron populations' precise encoding and operations have yet to be discovered.
This work illuminates the potential of matrix embeddings in advancing our understanding in fields like cognitive science and AI.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the intricate architecture of the mammalian central nervous system,
neurons form populations. Axonal bundles communicate between these clusters
using spike trains. However, these neuron populations' precise encoding and
operations have yet to be discovered. In our analysis, the starting point is a
state-of-the-art mechanistic model of a generic neuron endowed with plasticity.
From this simple framework emerges a subtle mathematical construct: The
representation and manipulation of information can be precisely characterized
by an algebra of convex cones. Furthermore, these neuron populations are not
merely passive transmitters. They act as operators within this algebraic
structure, mirroring the functionality of a low-level programming language.
When these populations interconnect, they embody succinct yet potent algebraic
expressions. These networks allow them to implement many operations, such as
specialization, generalization, novelty detection, dimensionality reduction,
inverse modeling, prediction, and associative memory. In broader terms, this
work illuminates the potential of matrix embeddings in advancing our
understanding in fields like cognitive science and AI. These embeddings enhance
the capacity for concept processing and hierarchical description over their
vector counterparts.
Related papers
- Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
We introduce and evaluate a brain-like neural network model capable of unsupervised representation learning.
The model was tested on a diverse set of popular machine learning benchmarks.
arXiv Detail & Related papers (2024-06-07T08:32:30Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Goal-Driven Approach to Systems Neuroscience [2.6451153531057985]
Humans and animals exhibit a range of interesting behaviors in dynamic environments.
It is unclear how our brains actively reformat this dense sensory information to enable these behaviors.
We offer a new definition of interpretability that we show has promise in yielding unified structural and functional models of neural circuits.
arXiv Detail & Related papers (2023-11-05T16:37:53Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Emergence of Machine Language: Towards Symbolic Intelligence with Neural
Networks [73.94290462239061]
We propose to combine symbolism and connectionism principles by using neural networks to derive a discrete representation.
By designing an interactive environment and task, we demonstrated that machines could generate a spontaneous, flexible, and semantic language.
arXiv Detail & Related papers (2022-01-14T14:54:58Z) - Detecting Modularity in Deep Neural Networks [8.967870619902211]
We consider the problem of assessing the modularity exhibited by a partitioning of a network's neurons.
We propose two proxies for this: importance, which reflects how crucial sets of neurons are to network performance; and coherence, which reflects how consistently their neurons associate with features of the inputs.
We show that these partitionings, even ones based only on weights, reveal groups of neurons that are important and coherent.
arXiv Detail & Related papers (2021-10-13T20:33:30Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Compositional Processing Emerges in Neural Networks Solving Math
Problems [100.80518350845668]
Recent progress in artificial neural networks has shown that when large models are trained on enough linguistic data, grammatical structure emerges in their representations.
We extend this work to the domain of mathematical reasoning, where it is possible to formulate precise hypotheses about how meanings should be composed.
Our work shows that neural networks are not only able to infer something about the structured relationships implicit in their training data, but can also deploy this knowledge to guide the composition of individual meanings into composite wholes.
arXiv Detail & Related papers (2021-05-19T07:24:42Z) - Neural population geometry: An approach for understanding biological and
artificial neural networks [3.4809730725241605]
We review examples of geometrical approaches providing insight into the function of biological and artificial neural networks.
Neural population geometry has the potential to unify our understanding of structure and function in biological and artificial neural networks.
arXiv Detail & Related papers (2021-04-14T18:10:34Z) - Continual Learning with Deep Artificial Neurons [0.0]
We introduce Deep Artificial Neurons (DANs), which are themselves realized as deep neural networks.
We demonstrate that it is possible to meta-learn a single parameter vector, which we dub a neuronal phenotype, shared by all DANs in the network.
We show that a suitable neuronal phenotype can endow a single network with an innate ability to update its synapses with minimal forgetting.
arXiv Detail & Related papers (2020-11-13T17:50:10Z) - Compositional Explanations of Neurons [52.71742655312625]
We describe a procedure for explaining neurons in deep representations by identifying compositional logical concepts.
We use this procedure to answer several questions on interpretability in models for vision and natural language processing.
arXiv Detail & Related papers (2020-06-24T20:37:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.