Geometric squeezing of rotating quantum gases into the lowest Landau
level
- URL: http://arxiv.org/abs/2309.02510v1
- Date: Tue, 5 Sep 2023 18:01:01 GMT
- Title: Geometric squeezing of rotating quantum gases into the lowest Landau
level
- Authors: Valentin Cr\'epel, Ruixiao Yao, Biswaroop Mukherjee, Richard J.
Fletcher, Martin Zwierlein
- Abstract summary: Experimental advances have enabled the observation of a Bose-Einstein condensate entirely contained in its lowest kinetic energy state.
We show that it can be interpreted as a squeezing of the geometric degree of freedom of the problem.
This "geometric squeezing" offers an unprecedented experimental control over the quantum geometry in Landau-level analogues.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The simulation of quantum Hall physics with rotating quantum gases is
witnessing a revival due to recent experimental advances that enabled the
observation of a Bose-Einstein condensate entirely contained in its lowest
kinetic energy state, i.e. the lowest Landau level. We theoretically describe
this experimental result, and show that it can be interpreted as a squeezing of
the geometric degree of freedom of the problem, the guiding center metric. This
"geometric squeezing" offers an unprecedented experimental control over the
quantum geometry in Landau-level analogues, and at the same time opens a
realistic path towards achieving correlated quantum phases akin to quantum Hall
states with neutral atoms.
Related papers
- Observation of quantum superposition of topological defects in a trapped ion quantum simulator [10.307677845109378]
We report the observation of quantum superposition of topological defects in a trapped-ion quantum simulator.
Our work provides useful tools for non-equilibrium dynamics in quantum Kibble-Zurek physics.
arXiv Detail & Related papers (2024-10-20T13:27:13Z) - Emergent Fracton Hydrodynamics in the Fractional Quantum Hall Regime of Ultracold Atoms [41.94295877935867]
We show that in the lowest Landau level the system generically relaxes subdiffusively.
The slow relaxation is understood from emergent conservation laws of the total charge.
We discuss the prospect of rotating quantum gases as well as ultracold atoms in optical lattices for observing this unconventional relaxation dynamics.
arXiv Detail & Related papers (2024-10-09T18:00:02Z) - Fractional quantum mechanics meets quantum gravity phenomenology [0.0]
We provide insights into a potential deep infrared regime of quantum gravity, characterized by the emergence of fractal dimensions.
We identify instances of nonlocal behavior in such systems, suggesting an analogous phenomenon of nonlocality in quantum gravity.
arXiv Detail & Related papers (2024-05-22T11:28:22Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Strongly interacting trapped one-dimensional quantum gases: an exact
solution [0.0]
Review collects the predictions coming from a family of exact solutions.
The exact solution applies to bosons, fermions and mixtures.
It also predicts the exact quantum dynamics at all the times.
arXiv Detail & Related papers (2022-01-07T08:06:43Z) - Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum [58.720142291102135]
We show traces of quantum friction in the degradation of the quantum coherence of a particle.
We propose to use the accumulated geometric phase acquired by a particle as a quantum friction sensor.
The experimentally viable scheme presented can spark renewed optimism for the detection of non-contact friction.
arXiv Detail & Related papers (2021-03-22T16:25:27Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Experiment-friendly formulation of quantum backflow [1.0323063834827415]
We quantify the amount of quantum backflow for arbitrary momentum distributions.
We show that the probability of finding a free falling particle above initial level could grow for suitably prepared quantum state with most momentum downwards.
arXiv Detail & Related papers (2020-08-18T13:52:15Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.