論文の概要: A skeletonization algorithm for gradient-based optimization
- arxiv url: http://arxiv.org/abs/2309.02527v1
- Date: Tue, 5 Sep 2023 18:40:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 17:58:02.250411
- Title: A skeletonization algorithm for gradient-based optimization
- Title(参考訳): 勾配最適化のためのスケルトン化アルゴリズム
- Authors: Martin J. Menten and Johannes C. Paetzold and Veronika A. Zimmer and
Suprosanna Shit and Ivan Ezhov and Robbie Holland and Monika Probst and Julia
A. Schnabel and Daniel Rueckert
- Abstract要約: デジタル画像の骨格は、そのトポロジー、幾何学、スケールのコンパクトな表現である。
ほとんどの既存のスケルトン化アルゴリズムは微分不可能であり、勾配に基づく最適化と統合することは不可能である。
この研究は、勾配に基づく最適化と互換性があり、物体の位相を保存する最初の3次元スケルトン化アルゴリズムを導入する。
- 参考スコア(独自算出の注目度): 13.2737105544687
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The skeleton of a digital image is a compact representation of its topology,
geometry, and scale. It has utility in many computer vision applications, such
as image description, segmentation, and registration. However, skeletonization
has only seen limited use in contemporary deep learning solutions. Most
existing skeletonization algorithms are not differentiable, making it
impossible to integrate them with gradient-based optimization. Compatible
algorithms based on morphological operations and neural networks have been
proposed, but their results often deviate from the geometry and topology of the
true medial axis. This work introduces the first three-dimensional
skeletonization algorithm that is both compatible with gradient-based
optimization and preserves an object's topology. Our method is exclusively
based on matrix additions and multiplications, convolutional operations, basic
non-linear functions, and sampling from a uniform probability distribution,
allowing it to be easily implemented in any major deep learning library. In
benchmarking experiments, we prove the advantages of our skeletonization
algorithm compared to non-differentiable, morphological, and
neural-network-based baselines. Finally, we demonstrate the utility of our
algorithm by integrating it with two medical image processing applications that
use gradient-based optimization: deep-learning-based blood vessel segmentation,
and multimodal registration of the mandible in computed tomography and magnetic
resonance images.
- Abstract(参考訳): デジタル画像の骨格は、そのトポロジー、幾何学、スケールのコンパクトな表現である。
画像記述、セグメンテーション、登録など、多くのコンピュータビジョンアプリケーションで有用である。
しかし、骨格化は現代のディープラーニングソリューションでしか使われていない。
既存のスケルトン化アルゴリズムの多くは微分可能ではなく、勾配に基づく最適化と統合することは不可能である。
形態素演算とニューラルネットワークに基づく互換性のあるアルゴリズムが提案されているが、それらの結果はしばしば真の媒介軸の幾何学とトポロジーから逸脱している。
この研究は、勾配に基づく最適化と両立し、オブジェクトのトポロジを保存する最初の3次元骨格化アルゴリズムを導入している。
本手法は,行列の加法と乗法,畳み込み演算,基本非線形関数,一様確率分布からのサンプリングにより,任意の主要な深層学習ライブラリで容易に実装できる。
ベンチマーク実験では,非微分可能,形態的,ニューラルネットワークに基づくベースラインと比較して,骨格化アルゴリズムの利点を証明した。
最後に,このアルゴリズムを2つの医用画像処理アプリケーションに統合し,その有用性を実証する。深部学習に基づく血管分割法と,ctおよび磁気共鳴画像における下顎骨のマルチモーダル・レジストレーション法である。
関連論文リスト
- Advancements in Feature Extraction Recognition of Medical Imaging Systems Through Deep Learning Technique [0.36651088217486427]
高速な画像認識を実現するために,重みに基づく目的関数を提案する。
単純なアルゴリズムを用いたしきい値最適化手法を提案する。
異なる種類のオブジェクトは互いに独立しており、画像処理においてコンパクトであることがわかった。
論文 参考訳(メタデータ) (2024-05-23T04:46:51Z) - Unfolded proximal neural networks for robust image Gaussian denoising [7.018591019975253]
本稿では,二元FBと二元Chambolle-Pockアルゴリズムの両方に基づいて,ガウス分母タスクのためのPNNを統一的に構築するフレームワークを提案する。
また、これらのアルゴリズムの高速化により、関連するNN層におけるスキップ接続が可能であることを示す。
論文 参考訳(メタデータ) (2023-08-06T15:32:16Z) - Machine learning based biomedical image processing for echocardiographic
images [0.0]
提案手法では,K-Nearest Neighbor (KNN) アルゴリズムを用いて医用画像のセグメンテーションを行う。
トレーニングされたニューラルネットワークは、エコー画像のグループで正常にテストされている。
論文 参考訳(メタデータ) (2023-03-16T06:23:43Z) - A Novel Algorithm for Exact Concave Hull Extraction [0.0]
領域抽出は、自律運転における物体検出から細胞生物学における細胞内形態解析まで、幅広い用途で必要とされる。
2つの主要なアプローチがある: 凸殻抽出(convex hull extract)は、正確で効率的なアルゴリズムが存在し、実世界の形状を捉えるのに優れているが、単一の解を持たない。
本研究では,コンケーブ内包を最大分解能(ピクセル完全)で提供し,速度効率のトレードオフを調整可能な新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-23T05:26:48Z) - A Unified Framework for Implicit Sinkhorn Differentiation [58.56866763433335]
暗黙の微分によってシンクホーン層の解析勾配を求めるアルゴリズムを提案する。
特にGPUメモリなどのリソースが不足している場合には,計算効率が向上する。
論文 参考訳(メタデータ) (2022-05-13T14:45:31Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
双線形最適化問題に対処するために,CoGDアルゴリズムに基づく信頼度の高い学習法を提案する。
CoGDは、ある変数がスパーシティ制約を持つ場合の双線形問題を解くために導入された。
また、特徴と重みの関連を分解するためにも使用できるため、畳み込みニューラルネットワーク(CNN)をより良く訓練するための我々の手法をさらに一般化することができる。
論文 参考訳(メタデータ) (2021-06-20T04:28:20Z) - Progressive Spatio-Temporal Graph Convolutional Network for
Skeleton-Based Human Action Recognition [97.14064057840089]
本稿では,グラフ畳み込みネットワークのためのコンパクトで問題固有のネットワークを,段階的に自動的に見つける手法を提案する。
骨格に基づく人体行動認識のための2つのデータセットの実験結果から,提案手法は競争力あるいはより優れた分類性能を有することが示された。
論文 参考訳(メタデータ) (2020-11-11T09:57:49Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
我々は、前方通過を非滑らかな凸最適化問題として解釈できるニューラルネットワーク層の設計とトレーニングのための一般的なフレームワークを紹介する。
グラフのノードに代表されるローカルエージェントによって解決され、正規化関数を介して相互作用する凸ゲームに焦点を当てる。
このアプローチは、訓練可能なエンドツーエンドのディープモデル内で、古典的な画像の事前使用を可能にするため、画像の問題を解決するために魅力的である。
論文 参考訳(メタデータ) (2020-06-26T08:34:54Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
ニューラルな暗示表現で形状を一般化することは、各関数空間上の学習先行値に比例する。
形状空間の学習をメタラーニング問題として定式化し、勾配に基づくメタラーニングアルゴリズムを利用してこの課題を解決する。
論文 参考訳(メタデータ) (2020-06-17T05:14:53Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。