論文の概要: Skelite: Compact Neural Networks for Efficient Iterative Skeletonization
- arxiv url: http://arxiv.org/abs/2503.07369v1
- Date: Mon, 10 Mar 2025 14:27:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:45:58.489013
- Title: Skelite: Compact Neural Networks for Efficient Iterative Skeletonization
- Title(参考訳): Skelite: 効率的な反復骨格化のためのコンパクトニューラルネットワーク
- Authors: Luis D. Reyes Vargas, Martin J. Menten, Johannes C. Paetzold, Nassir Navab, Mohammad Farid Azampour,
- Abstract要約: 骨格化は、その幾何学と位相をコンパクトに符号化した画像から薄い表現を抽出する。
学習可能なコンポーネントを用いて反復骨格化アルゴリズムを訓練するための新しいフレームワークを提案する。
提案手法は,トポロジ制約付きアルゴリズムの100倍の高速化を示す。
- 参考スコア(独自算出の注目度): 38.6452617345504
- License:
- Abstract: Skeletonization extracts thin representations from images that compactly encode their geometry and topology. These representations have become an important topological prior for preserving connectivity in curvilinear structures, aiding medical tasks like vessel segmentation. Existing compatible skeletonization algorithms face significant trade-offs: morphology-based approaches are computationally efficient but prone to frequent breakages, while topology-preserving methods require substantial computational resources. We propose a novel framework for training iterative skeletonization algorithms with a learnable component. The framework leverages synthetic data, task-specific augmentation, and a model distillation strategy to learn compact neural networks that produce thin, connected skeletons with a fully differentiable iterative algorithm. Our method demonstrates a 100 times speedup over topology-constrained algorithms while maintaining high accuracy and generalizing effectively to new domains without fine-tuning. Benchmarking and downstream validation in 2D and 3D tasks demonstrate its computational efficiency and real-world applicability
- Abstract(参考訳): 骨格化は、その幾何学と位相をコンパクトに符号化した画像から薄い表現を抽出する。
これらの表現は、血管のセグメンテーションのような医療作業を支援するために、カービリナー構造における接続性を維持する上で重要なトポロジカルな先駆者となっている。
既存の互換性のあるスケルトン化アルゴリズムは大きなトレードオフに直面している: モルフォロジーに基づくアプローチは計算効率が良いが、頻繁な破壊の傾向があり、トポロジー保存法は相当な計算資源を必要とする。
学習可能なコンポーネントを用いて反復骨格化アルゴリズムを訓練するための新しいフレームワークを提案する。
このフレームワークは、合成データ、タスク固有の拡張、およびモデル蒸留戦略を活用して、完全に微分可能な反復アルゴリズムで細く接続された骨格を生成するコンパクトなニューラルネットワークを学習する。
提案手法は,トポロジ制約付きアルゴリズムよりも100倍の高速化を実現し,精度を保ちながら,微調整を行なわずに新しい領域に効果的に一般化する。
2次元および3次元タスクにおけるベンチマークと下流検証は、その計算効率と実世界の応用性を実証する
関連論文リスト
- A skeletonization algorithm for gradient-based optimization [13.2737105544687]
デジタル画像の骨格は、そのトポロジー、幾何学、スケールのコンパクトな表現である。
ほとんどの既存のスケルトン化アルゴリズムは微分不可能であり、勾配に基づく最適化と統合することは不可能である。
この研究は、勾配に基づく最適化と互換性があり、物体の位相を保存する最初の3次元スケルトン化アルゴリズムを導入する。
論文 参考訳(メタデータ) (2023-09-05T18:40:14Z) - A Generalization of Continuous Relaxation in Structured Pruning [0.3277163122167434]
トレンドは、パラメータが増加するより深い、より大きなニューラルネットワークが、より小さなニューラルネットワークよりも高い精度を達成することを示している。
ネットワーク拡張, プルーニング, サブネットワーク崩壊, 削除のためのアルゴリズムを用いて, 構造化プルーニングを一般化する。
結果のCNNは計算コストのかかるスパース行列演算を使わずにGPUハードウェア上で効率的に実行される。
論文 参考訳(メタデータ) (2023-08-28T14:19:13Z) - Cascaded multitask U-Net using topological loss for vessel segmentation
and centerline extraction [2.264332709661011]
本稿では,血管骨格をセグメント化から直接計算するU-Netによるソフトスケルトンアルゴリズムの置き換えを提案する。
セグメンテーション中にトポロジ的制約を埋め込むために、clDice損失をトレーニングしたカスケードU-Netをこのネットワーク上に構築する。
論文 参考訳(メタデータ) (2023-07-21T14:12:28Z) - An End-To-End-Trainable Iterative Network Architecture for Accelerated
Radial Multi-Coil 2D Cine MR Image Reconstruction [4.233498905999929]
我々は,複数のレシーバコイルを用いた加速2次元放射状シネMRIの画像再構成のためのCNNアーキテクチャを提案する。
提案手法を学習的・非学習的正規化手法と比較し,提案手法を他のよく知られた再構築手法と比較する。
論文 参考訳(メタデータ) (2021-02-01T11:42:04Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
我々はスケルトンに基づく行動認識のためのシンプルで高度にモジュール化されたグラフ畳み込みネットワークアーキテクチャを設計する。
ネットワークは,空間的および時間的経路から多粒度情報を集約するビルディングブロックを繰り返すことで構築される。
論文 参考訳(メタデータ) (2020-11-26T14:43:04Z) - Progressive Spatio-Temporal Graph Convolutional Network for
Skeleton-Based Human Action Recognition [97.14064057840089]
本稿では,グラフ畳み込みネットワークのためのコンパクトで問題固有のネットワークを,段階的に自動的に見つける手法を提案する。
骨格に基づく人体行動認識のための2つのデータセットの実験結果から,提案手法は競争力あるいはより優れた分類性能を有することが示された。
論文 参考訳(メタデータ) (2020-11-11T09:57:49Z) - Temporal Attention-Augmented Graph Convolutional Network for Efficient
Skeleton-Based Human Action Recognition [97.14064057840089]
グラフネットワーク(GCN)はユークリッド以外のデータ構造をモデル化するのに非常に成功した。
ほとんどのGCNベースのアクション認識手法は、計算量の多いディープフィードフォワードネットワークを使用して、全てのスケルトンをアクションで処理する。
本稿では,骨格に基づく行動認識の効率を高めるための時間的アテンションモジュール(TAM)を提案する。
論文 参考訳(メタデータ) (2020-10-23T08:01:55Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。