論文の概要: A Survey of the Impact of Self-Supervised Pretraining for Diagnostic
Tasks with Radiological Images
- arxiv url: http://arxiv.org/abs/2309.02555v1
- Date: Tue, 5 Sep 2023 19:45:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 17:46:53.878447
- Title: A Survey of the Impact of Self-Supervised Pretraining for Diagnostic
Tasks with Radiological Images
- Title(参考訳): 放射線画像診断における自己監督型事前訓練の効果に関する調査
- Authors: Blake VanBerlo, Jesse Hoey, Alexander Wong
- Abstract要約: 自己教師付き事前学習は,伝達学習における特徴表現の改善に有効であることが観察されている。
本総説ではX線, CT, 磁気共鳴, 超音波画像における使用法について概説する。
- 参考スコア(独自算出の注目度): 71.26717896083433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised pretraining has been observed to be effective at improving
feature representations for transfer learning, leveraging large amounts of
unlabelled data. This review summarizes recent research into its usage in
X-ray, computed tomography, magnetic resonance, and ultrasound imaging,
concentrating on studies that compare self-supervised pretraining to fully
supervised learning for diagnostic tasks such as classification and
segmentation. The most pertinent finding is that self-supervised pretraining
generally improves downstream task performance compared to full supervision,
most prominently when unlabelled examples greatly outnumber labelled examples.
Based on the aggregate evidence, recommendations are provided for practitioners
considering using self-supervised learning. Motivated by limitations identified
in current research, directions and practices for future study are suggested,
such as integrating clinical knowledge with theoretically justified
self-supervised learning methods, evaluating on public datasets, growing the
modest body of evidence for ultrasound, and characterizing the impact of
self-supervised pretraining on generalization.
- Abstract(参考訳): 自己教師付き事前学習は,大量の未学習データを活用することによって,伝達学習における特徴表現の改善に有効であることが観察されている。
本稿では, X線, コンピュータ断層撮影, 磁気共鳴, 超音波画像の応用に関する最近の研究を要約し, 自己教師付きプレトレーニングと, 分類やセグメンテーションなどの診断タスクの完全教師付き学習を比較した。
最も注意深い発見は、自己教師付き事前訓練が一般的に、完全な監督よりも下流のタスクパフォーマンスを改善することである。
総合的エビデンスに基づき,自己指導型学習の活用を検討する実践者に対して勧告を行う。
臨床知識を理論的に正当化された自己教師あり学習手法と統合し、公開データセットで評価し、超音波の証拠の控えめな体を成長させ、自己教師ありプレトレーニングが一般化に与える影響を特徴づけるなど、現在の研究で特定された制限により、今後の研究の方向性や実践が示唆される。
関連論文リスト
- Multi-organ Self-supervised Contrastive Learning for Breast Lesion
Segmentation [0.0]
本稿では,臓器関連目標タスクに適した事前学習モデルとして,多臓器データセットを用いる。
対象は超音波画像における乳腺腫瘍のセグメンテーションである。
その結果,従来のコントラスト学習事前学習は,教師付きベースラインアプローチに比べて性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-02-21T20:29:21Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
本稿では、MIMIC-IVデータセットを用いて、滞在時間を予測するXGBoostバイナリ分類モデルにおける公平性とバイアスについて検討する。
この研究は、人口統計属性にわたるデータセットのクラス不均衡を明らかにし、データ前処理と特徴抽出を採用する。
この論文は、偏見を緩和するための公正な機械学習技術と、医療専門家とデータサイエンティストの協力的な努力の必要性について結論付けている。
論文 参考訳(メタデータ) (2023-12-31T16:01:48Z) - Exploring the Utility of Self-Supervised Pretraining Strategies for the
Detection of Absent Lung Sliding in M-Mode Lung Ultrasound [72.39040113126462]
セルフ教師付きプレトレーニングは、医用画像における教師付き学習タスクのパフォーマンスを向上させるために観察されている。
本研究は,Mモード肺超音波画像における肺スライディング分類の下流タスクの微調整を指導する前,自己指導型プレトレーニングの有用性について検討した。
論文 参考訳(メタデータ) (2023-04-05T20:01:59Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - Evaluating the Robustness of Self-Supervised Learning in Medical Imaging [57.20012795524752]
自己監督は、小さな注釈付きデータセット上でターゲットタスクを訓練する際の効果的な学習戦略であることを示した。
本研究では,自己監視学習によって訓練されたネットワークが,医療画像の文脈における完全監視学習と比較して,堅牢性と汎用性に優れていることを示した。
論文 参考訳(メタデータ) (2021-05-14T17:49:52Z) - Self-supervised driven consistency training for annotation efficient
histopathology image analysis [13.005873872821066]
大きなラベル付きデータセットでニューラルネットワークをトレーニングすることは、計算病理学において依然として支配的なパラダイムである。
本研究では,非教師付き表現学習のための強力な監視信号を学ぶために,ヒストロジ全体スライディング画像の背景となる多段階的文脈的手がかりを利用する自己教師付きプレテキストタスクを提案する。
また,タスク固有の未ラベルデータとの予測整合性に基づいて,事前学習した表現を下流タスクに効果的に転送することを学ぶ教師による半教師付き一貫性パラダイムを提案する。
論文 参考訳(メタデータ) (2021-02-07T19:46:21Z) - Improving colonoscopy lesion classification using semi-supervised deep
learning [2.568264809297699]
半教師付き学習における最近の研究は、大量の未ラベルデータによるトレーニングから、画像の有意義な表現が得られることを示した。
大腸内視鏡検査では,教師なしのジグソー学習課題と教師付きトレーニングの併用により,病変の分類精度が最大9.8%向上した。
論文 参考訳(メタデータ) (2020-09-07T15:25:35Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。