Forensics and security issues in the Internet of Things
- URL: http://arxiv.org/abs/2309.02707v2
- Date: Fri, 25 Apr 2025 07:10:53 GMT
- Title: Forensics and security issues in the Internet of Things
- Authors: Shams Forruque Ahmed, Shanjana Shuravi, Afsana Bhuyian, Shaila Afrin, Aanushka Mehjabin, Sweety Angela Kuldeep, Md. Sakib Bin Alam, Amir H. Gandomi,
- Abstract summary: This paper reviews forensic and security issues associated with IoT in different fields.<n>Most IoT devices are vulnerable to attacks due to a lack of standardized security measures.<n>To fulfill the security-conscious needs of consumers, IoT can be used to develop a smart home system.
- Score: 6.422895251217666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given the exponential expansion of the internet, the possibilities of security attacks and cybercrimes have increased accordingly. However, poorly implemented security mechanisms in the Internet of Things (IoT) devices make them susceptible to cyberattacks, which can directly affect users. IoT forensics is thus needed to investigate and mitigate such attacks. While many works have examined IoT applications and challenges, only a few have focused on both the forensic and security issues in IoT. Therefore, this paper reviews forensic and security issues associated with IoT in different fields. Prospects and challenges in IoT research and development are also highlighted. As the literature demonstrates, most IoT devices are vulnerable to attacks due to a lack of standardized security measures. Unauthorized users could get access, compromise data, and even benefit from control of critical infrastructure. To fulfill the security-conscious needs of consumers, IoT can be used to develop a smart home system by designing the security-conscious needs of consumers; IoT can be used to create a smart home system by designing an IoT can be used to develop a smart home system by designing a FLIP-based system that is highly scalable and adaptable. A blockchain-based authentication mechanism with a multi-chain structure can provide additional security protection between different trust domains. Deep learning can be utilized to develop a network forensics framework with a high-performing system for detecting and tracking cyberattack incidents. Moreover, researchers should consider limiting the amount of data created and delivered when using big data to develop IoT-based smart systems. The findings of this review will stimulate academics to seek potential solutions for the identified issues, thereby advancing the IoT field.
Related papers
- Intelligent Detection of Non-Essential IoT Traffic on the Home Gateway [45.70482328441101]
This work presents ML-IoTrim, a system for detecting and mitigating non-essential IoT traffic by analyzing network behavior at the edge.
We test our framework in a consumer smart home setup with IoT devices from five categories, demonstrating that the model can accurately identify and block non-essential traffic.
This research advances privacy-aware traffic control in smart homes, paving the way for future developments in IoT device privacy.
arXiv Detail & Related papers (2025-04-22T09:40:05Z) - Machine Learning-Assisted Intrusion Detection for Enhancing Internet of Things Security [1.2369895513397127]
Attacks against the Internet of Things (IoT) are rising as devices, applications, and interactions become more networked and integrated.
To efficiently secure IoT devices, real-time detection of intrusion systems is critical.
This paper investigates the latest research on machine learning-based intrusion detection strategies for IoT security.
arXiv Detail & Related papers (2024-10-01T19:24:34Z) - Differentiated Security Architecture for Secure and Efficient Infotainment Data Communication in IoV Networks [55.340315838742015]
Negligence on the security of infotainment data communication in IoV networks can unintentionally open an easy access point for social engineering attacks.
In particular, we first classify data communication in the IoV network, examine the security focus of each data communication, and then develop a differentiated security architecture to provide security protection on a file-to-file basis.
arXiv Detail & Related papers (2024-03-29T12:01:31Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
This paper provides a classification of IoT malware.
Major targets and used exploits for attacks are identified and referred to the specific malware.
The majority of current IoT attacks continue to be of comparably low effort and level of sophistication and could be mitigated by existing technical measures.
arXiv Detail & Related papers (2023-12-01T16:10:43Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - Machine and Deep Learning for IoT Security and Privacy: Applications,
Challenges, and Future Directions [0.0]
The integration of the Internet of Things (IoT) connects a number of intelligent devices with a minimum of human interference.
Current security approaches can also be improved to protect the IoT environment effectively.
Deep learning (DL)/ machine learning (ML) methods are essential to turn IoT systems protection from simply enabling safe contact between IoT systems to intelligence systems in security.
arXiv Detail & Related papers (2022-10-24T19:02:27Z) - HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a
Collaborative IoT Intrusion Detection [0.0]
We propose a hierarchical blockchain-based federated learning framework to enable secure and privacy-preserved collaborative IoT intrusion detection.
The proposed ML-based intrusion detection framework follows a hierarchical federated learning architecture to ensure the privacy of the learning process and organisational data.
The outcome is a securely designed ML-based intrusion detection system capable of detecting a wide range of malicious activities while preserving data privacy.
arXiv Detail & Related papers (2022-04-08T19:06:16Z) - Reinforcement Learning for IoT Security: A Comprehensive Survey [4.0059435854780965]
Security has been a long run challenge in the IoT systems which has many attack vectors, security flaws and vulnerabilities.
In this paper, we present a comprehensive survey of different types of cyber-attacks against different IoT systems.
We then present reinforcement learning and deep reinforcement learning based security solutions to combat those different types of attacks in different IoT systems.
arXiv Detail & Related papers (2021-02-14T21:09:49Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Smart Home, security concerns of IoT [91.3755431537592]
The IoT (Internet of Things) has become widely popular in the domestic environments.
People are renewing their homes into smart homes; however, the privacy concerns of owning many Internet connected devices with always-on environmental sensors remain insufficiently addressed.
Default and weak passwords, cheap materials and hardware, and unencrypted communication are identified as the principal threats and vulnerabilities of IoT devices.
arXiv Detail & Related papers (2020-07-06T10:36:11Z) - Machine Learning Based Solutions for Security of Internet of Things
(IoT): A Survey [8.108571247838206]
IoT platforms have been developed into a global giant that grabs every aspect of our daily lives by advancing human life with its unaccountable smart services.
There are existing security measures that can be applied to protect IoT.
Traditional techniques are not as efficient with the advancement booms as well as different attack types and their severeness.
A huge technological advancement has been noticed in Machine Learning (ML) which has opened many possible research windows to address ongoing and future challenges in IoT.
arXiv Detail & Related papers (2020-04-11T03:08:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.