MLN-net: A multi-source medical image segmentation method for clustered
microcalcifications using multiple layer normalization
- URL: http://arxiv.org/abs/2309.02742v2
- Date: Thu, 4 Jan 2024 03:08:36 GMT
- Title: MLN-net: A multi-source medical image segmentation method for clustered
microcalcifications using multiple layer normalization
- Authors: Ke Wang, Zanting Ye, Xiang Xie, Haidong Cui, Tao Chen, Banteng Liu
- Abstract summary: We propose a novel framework named MLN-net, which can accurately segment multi-source images using only single source images.
In this paper, extensive experiments validate the effectiveness of MLN-net in segmenting clustered microcalcifications from different domains.
- Score: 8.969596531778121
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate segmentation of clustered microcalcifications in mammography is
crucial for the diagnosis and treatment of breast cancer. Despite exhibiting
expert-level accuracy, recent deep learning advancements in medical image
segmentation provide insufficient contribution to practical applications, due
to the domain shift resulting from differences in patient postures, individual
gland density, and imaging modalities of mammography etc. In this paper, a
novel framework named MLN-net, which can accurately segment multi-source images
using only single source images, is proposed for clustered microcalcification
segmentation. We first propose a source domain image augmentation method to
generate multi-source images, leading to improved generalization. And a
structure of multiple layer normalization (LN) layers is used to construct the
segmentation network, which can be found efficient for clustered
microcalcification segmentation in different domains. Additionally, a branch
selection strategy is designed for measuring the similarity of the source
domain data and the target domain data. To validate the proposed MLN-net,
extensive analyses including ablation experiments are performed, comparison of
12 baseline methods. Extensive experiments validate the effectiveness of
MLN-net in segmenting clustered microcalcifications from different domains and
the its segmentation accuracy surpasses state-of-the-art methods. Code will be
available at https://github.com/yezanting/MLN-NET-VERSON1.
Related papers
- MM-UNet: A Mixed MLP Architecture for Improved Ophthalmic Image Segmentation [3.2846676620336632]
Ophthalmic image segmentation serves as a critical foundation for ocular disease diagnosis.
Transformer-based models address these limitations but introduce substantial computational overhead.
We introduce MM-UNet, an efficient Mixed model tailored for ophthalmic image segmentation.
arXiv Detail & Related papers (2024-08-16T08:34:50Z) - Interpretable Small Training Set Image Segmentation Network Originated
from Multi-Grid Variational Model [5.283735137946097]
Deep learning (DL) methods have been proposed and widely used for image segmentation.
DL methods usually require a large amount of manually segmented data as training data and suffer from poor interpretability.
In this paper, we replace the hand-crafted regularity term in the MS model with a data adaptive generalized learnable regularity term.
arXiv Detail & Related papers (2023-06-25T02:34:34Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
We propose a general multi-scale in multi-scale subtraction network (M$2$SNet) to finish diverse segmentation from medical image.
Our method performs favorably against most state-of-the-art methods under different evaluation metrics on eleven datasets of four different medical image segmentation tasks.
arXiv Detail & Related papers (2023-03-20T06:26:49Z) - MSCDA: Multi-level Semantic-guided Contrast Improves Unsupervised Domain
Adaptation for Breast MRI Segmentation in Small Datasets [5.272836235045653]
We propose a novel Multi-level Semantic-guided Contrastive Domain Adaptation framework.
Our approach incorporates self-training with contrastive learning to align feature representations between domains.
In particular, we extend the contrastive loss by incorporating pixel-to-pixel, pixel-to-centroid, and centroid-to-centroid contrasts.
arXiv Detail & Related papers (2023-01-04T19:16:55Z) - A Unified Framework for Generalized Low-Shot Medical Image Segmentation
with Scarce Data [24.12765716392381]
We propose a unified framework for generalized low-shot (one- and few-shot) medical image segmentation based on distance metric learning (DML)
Via DML, the framework learns a multimodal mixture representation for each category, and performs dense predictions based on cosine distances between the pixels' deep embeddings and the category representations.
In our experiments on brain MRI and abdominal CT datasets, the proposed framework achieves superior performances for low-shot segmentation towards standard DNN-based (3D U-Net) and classical registration-based (ANTs) methods.
arXiv Detail & Related papers (2021-10-18T13:01:06Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention
and Dynamic Resampling [13.542898009730804]
The performance of relevant algorithms is significantly affected by the proper fusion of the multi-modal information.
We present the Max-Fusion U-Net that achieves improved pathology segmentation performance.
We evaluate our methods using the Myocardial pathology segmentation (MyoPS) combining the multi-sequence CMR dataset.
arXiv Detail & Related papers (2020-09-05T17:24:23Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.